/* This file is part of the OpenLB library
*
* Copyright (C) 2017 Max Gaedtke, Albert Mink
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef THERMALUNITCONVERTER_HH
#define THERMALUNITCONVERTER_HH
#include
#include
#include
#include "core/singleton.h"
#include "io/fileName.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
template
void ThermalUnitConverter::print() const
{
clout << "----------------- UnitConverter information -----------------" << std::endl;
clout << "-- Parameters:" << std::endl;
clout << "Resolution: N= " << this->getResolution() << std::endl;
clout << "Lattice velocity: latticeU= " << this->getCharLatticeVelocity() << std::endl;
clout << "Lattice relaxation frequency: omega= " << this->getLatticeRelaxationFrequency() << std::endl;
clout << "Lattice relaxation time: tau= " << this->getLatticeRelaxationTime() << std::endl;
clout << "Thermal Lattice relaxation frequency: omega_AD= " << this->getLatticeThermalRelaxationFrequency() << std::endl;
clout << "Thermal Lattice relaxation time: tau_AD= " << this->getLatticeThermalRelaxationTime() << std::endl;
clout << "Characteristical length(m): charL= " << this->getCharPhysLength() << std::endl;
clout << "Characteristical speed(m/s): charU= " << this->getCharPhysVelocity() << std::endl;
clout << "Phys. kinematic viscosity(m^2/s): charNu= " << this->getPhysViscosity() << std::endl;
clout << "Phys. density(kg/m^d): charRho= " << this->getPhysDensity() << std::endl;
clout << "Characteristical pressure(N/m^2): charPressure= " << this->getCharPhysPressure() << std::endl;
clout << "Reynolds number: reynoldsNumber= " << this->getReynoldsNumber() << std::endl;
clout << "-------------------------------------------------------------" << std::endl;
clout << "----------------- ThermalUnitConverter information -----------------" << std::endl;
clout << "-- Parameters:" << std::endl;
clout << "Phys. Delta X(m): physDeltaX= " << this->getPhysDeltaX() << std::endl;
clout << "Phys. Delta T(s): physDeltaT= " << this->getPhysDeltaT() << std::endl;
clout << "Characteristical pressure(N/m^2): charPressure= " << this->getCharPhysPressure() << std::endl;
clout << "Phys. Thermal Conductivity(W/m/K): physThermalCondcticity= " << getThermalConductivity() << std::endl;
clout << "Phys. specific Heat Capacity(J/kg/K): physSpecificHeatCapacity= " << getPhysSpecificHeatCapacity() << std::endl;
clout << "Phys. Thermal Expasion Coefficent(K^-1): physThermalExpansionCoefficent= " << getPhysThermalExpansionCoefficient() << std::endl;
clout << "Characteristical Phys. low Temperature(K): charPhysLowTemperature= " << getCharPhysLowTemperature() << std::endl;
clout << "Characteristical Phys. high Temperature(K): charPhysHighTemperature= " << getCharPhysHighTemperature() << std::endl;
clout << "Prandtl number: prandtlNumber= " << getPrandtlNumber() << std::endl;
clout << "Rayleigh number: rayleighNumber= " << getRayleighNumber() << std::endl;
clout << "-------------------------------------------------------------" << std::endl;
clout << "----------------- Conversion factors:-----------------" << std::endl;
clout << "Voxel length(m): physDeltaX= " << this->getConversionFactorLength() << std::endl;
clout << "Time step(s): physDeltaT= " << this->getConversionFactorTime() << std::endl;
clout << "Velocity factor(m/s): physVelocity= " << this->getConversionFactorVelocity() << std::endl;
clout << "Density factor(kg/m^3): physDensity= " << this->getConversionFactorDensity() << std::endl;
clout << "Mass factor(kg): physMass= " << this->getConversionFactorMass() << std::endl;
clout << "Viscosity factor(m^2/s): physViscosity= " << this->getConversionFactorViscosity() << std::endl;
clout << "Force factor(N): physForce= " << this->getConversionFactorForce() << std::endl;
clout << "Pressure factor(N/m^2): physPressure= " << this->getConversionFactorPressure() << std::endl;
clout << "-------------------------------------------------------------" << std::endl;
clout << "----------------- ThermalConversion factors:-----------------" << std::endl;
clout << "Temperature(K): temperature= " << getConversionFactorTemperature() << std::endl;
clout << "Thermal Duffusity(m^2/s): physThermalDiffusity= " << getConversionFactorThermalDiffusivity() << std::endl;
clout << "specific Heat Capacity(J/kg): physSpecificHeatCapacity= " << getConversionFactorSpecificHeatCapacity() << std::endl;
clout << "Thermal Coductivity(W/m/K): physThermalCondcticity= " << getConversionFactorThermalConductivity() << std::endl;
clout << "HeatFlux(W): physHeatFlux= " << getConversionFactorHeatFlux() << std::endl;
clout << "-------------------------------------------------------------" << std::endl;
}
/*
template
void ThermalUnitConverter::writeDatFile(std::string const& title) const
{
std::string dataFile = singleton::directories().getLogOutDir() + title + ".dat";
if (singleton::mpi().isMainProcessor())
{
std::ofstream fout;
fout.open(dataFile.c_str(), std::ios::trunc);
fout << "----------------- ThermalUnitConverter information -----------------" << std::endl;
fout << "-- Parameters:" << std::endl;
fout << "Phys. Delta X: physDeltaX= " << getPhysDeltaX() << std::endl;
fout << "Phys. Delta T: physDeltaT= " << getPhysDeltaT() << std::endl;
fout << "Characteristical pressure(N/m^2): charPressure= " << getCharPhysPressure() << std::endl;
fout << "Phys. Thermal Conductivity: physThermalCondcticity= " << getPhysThermalCondcticity() << std::endl;
fout << "Phys. specific Heat Capacity: physSpecificHeatCapacity= " << getPhysSpecificHeatCapacity() << std::endl;
fout << "Phys. Thermal Expasion Coefficent physThermalExpansionCoefficent= " << getPhysThermalExpasionCoefficent << std::endl;
fout << "Characteristical Phys. low Temperature charPhysLowTemperature= " << getCharPhysLowTemperature << std::endl;
fout << "Characteristical Phys. high Temperature charPhysHighTemperature= " << getCharPhysHighTemperature << std::endl;
fout << std::endl;
fout << "-- Conversion factors:" << std::endl;
fout << "Temperature: temperature= " << getConversionFactorTemperature() << std::endl;
fout << "Thermal Duffusity: physThermalDiffusity= " << getConversionFactorThermalDiffusivity() << std::endl;
fout << "specific Heat Capacity: physSpecificHeatCapacity= " << getConversionFactorSpecificHeatCapacity() << std::endl;
fout << "Thermal Coductivity: physThermalCondcticity= " << getConversionFactorThermalConductivity() << std::endl;
fout << "HeatFlux: physHeatFlux= " << getConversionFactorHeatFlux() << std::endl;
fout << "-------------------------------------------------------------" << std::endl;
fout.close();
}
}
*/
/*
template
ThermalUnitConverter* createThermalUnitConverter(XMLreader const& params)
{
OstreamManager clout(std::cout,"createThermalUnitConverter");
params.setWarningsOn(false);
T physDeltaX;
T physDeltaT;
T charPhysHighTemperature;
T charPhysLowTemperature;
T physThermalCondcticity;
T physDensity;
T charPhysPressure = 0;
int resolution;
T latticeRelaxationTime;
T charLatticeVelocity;
// params[parameter].read(value) sets the value or returns false if the parameter can not be found
params["Application"]["ThermalPhysParameters"]["CharPhysLowTemperature"].read(charPhysLowTemperature);
params["Application"]["ThermalPhysParameters"]["charPhysHighTemperature"].read(charPhysHighTemperature);
params["Application"]["ThermalPhysParameters"]["PhysThermalCondcticity"].read(physThermalCondcticity);
params["Application"]["ThermalPhysParameters"]["PhysDensity"].read(physDensity);
params["Application"]["ThermalPhysParameters"]["CharPhysPressure"].read(charPhysPressure);
if (!params["Application"]["Discretization"]["PhysDeltaX"].read(physDeltaX,false)) {
if (!params["Application"]["Discretization"]["Resolution"].read(resolution,false)) {
if (!params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) {
// NOT found physDeltaX, resolution or charLatticeVelocity
clout << "Error: Have not found PhysDeltaX, Resolution or CharLatticeVelocity in XML file."
<< std::endl;
exit (1);
}
else {
// found charLatticeVelocity
if (params["Application"]["Discretization"]["PhysDeltaT"].read(physDeltaT,false)) {
physDeltaX = charPhysVelocity / charLatticeVelocity * physDeltaT;
}
else if (params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) {
physDeltaX = physViscosity * charLatticeVelocity / charPhysVelocity * descriptors::invCs2() / (latticeRelaxationTime - 0.5);
}
}
}
else {
// found resolution
physDeltaX = charPhysLength / resolution;
}
}
// found physDeltaX
if (!params["Application"]["Discretization"]["PhysDeltaT"].read(physDeltaT,false)) {
if (!params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) {
if (!params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) {
// NOT found physDeltaT, latticeRelaxationTime and charLatticeVelocity
clout << "Error: Have not found PhysDeltaT, LatticeRelaxationTime or CharLatticeVelocity in XML file."
<< std::endl;
exit (1);
}
else {
// found charLatticeVelocity
physDeltaT = charLatticeVelocity / charPhysVelocity * physDeltaX;
}
}
else {
// found latticeRelaxationTime
physDeltaT = (latticeRelaxationTime - 0.5) / descriptors::invCs2() * physDeltaX * physDeltaX / physViscosity;
}
}
return new ThermalUnitConverter(physDeltaX, physDeltaT, charPhysLength, charPhysVelocity, physViscosity, physDensity,T physThermalConductivity,T physSpecificHeatCapacity,T physThermalExpansionCoefficient,T charPhysLowTemperature,T charPhysHighTemperature, charPhysPressure);
}*/
} // namespace olb
#endif