/* This file is part of the OpenLB library * * Copyright (C) 2017 Max Gaedtke, Albert Mink * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef THERMALUNITCONVERTER_HH #define THERMALUNITCONVERTER_HH #include #include #include #include "core/singleton.h" #include "io/fileName.h" /// All OpenLB code is contained in this namespace. namespace olb { template void ThermalUnitConverter::print() const { clout << "----------------- UnitConverter information -----------------" << std::endl; clout << "-- Parameters:" << std::endl; clout << "Resolution: N= " << this->getResolution() << std::endl; clout << "Lattice velocity: latticeU= " << this->getCharLatticeVelocity() << std::endl; clout << "Lattice relaxation frequency: omega= " << this->getLatticeRelaxationFrequency() << std::endl; clout << "Lattice relaxation time: tau= " << this->getLatticeRelaxationTime() << std::endl; clout << "Thermal Lattice relaxation frequency: omega_AD= " << this->getLatticeThermalRelaxationFrequency() << std::endl; clout << "Thermal Lattice relaxation time: tau_AD= " << this->getLatticeThermalRelaxationTime() << std::endl; clout << "Characteristical length(m): charL= " << this->getCharPhysLength() << std::endl; clout << "Characteristical speed(m/s): charU= " << this->getCharPhysVelocity() << std::endl; clout << "Phys. kinematic viscosity(m^2/s): charNu= " << this->getPhysViscosity() << std::endl; clout << "Phys. density(kg/m^d): charRho= " << this->getPhysDensity() << std::endl; clout << "Characteristical pressure(N/m^2): charPressure= " << this->getCharPhysPressure() << std::endl; clout << "Reynolds number: reynoldsNumber= " << this->getReynoldsNumber() << std::endl; clout << "-------------------------------------------------------------" << std::endl; clout << "----------------- ThermalUnitConverter information -----------------" << std::endl; clout << "-- Parameters:" << std::endl; clout << "Phys. Delta X(m): physDeltaX= " << this->getPhysDeltaX() << std::endl; clout << "Phys. Delta T(s): physDeltaT= " << this->getPhysDeltaT() << std::endl; clout << "Characteristical pressure(N/m^2): charPressure= " << this->getCharPhysPressure() << std::endl; clout << "Phys. Thermal Conductivity(W/m/K): physThermalCondcticity= " << getThermalConductivity() << std::endl; clout << "Phys. specific Heat Capacity(J/kg/K): physSpecificHeatCapacity= " << getPhysSpecificHeatCapacity() << std::endl; clout << "Phys. Thermal Expasion Coefficent(K^-1): physThermalExpansionCoefficent= " << getPhysThermalExpansionCoefficient() << std::endl; clout << "Characteristical Phys. low Temperature(K): charPhysLowTemperature= " << getCharPhysLowTemperature() << std::endl; clout << "Characteristical Phys. high Temperature(K): charPhysHighTemperature= " << getCharPhysHighTemperature() << std::endl; clout << "Prandtl number: prandtlNumber= " << getPrandtlNumber() << std::endl; clout << "Rayleigh number: rayleighNumber= " << getRayleighNumber() << std::endl; clout << "-------------------------------------------------------------" << std::endl; clout << "----------------- Conversion factors:-----------------" << std::endl; clout << "Voxel length(m): physDeltaX= " << this->getConversionFactorLength() << std::endl; clout << "Time step(s): physDeltaT= " << this->getConversionFactorTime() << std::endl; clout << "Velocity factor(m/s): physVelocity= " << this->getConversionFactorVelocity() << std::endl; clout << "Density factor(kg/m^3): physDensity= " << this->getConversionFactorDensity() << std::endl; clout << "Mass factor(kg): physMass= " << this->getConversionFactorMass() << std::endl; clout << "Viscosity factor(m^2/s): physViscosity= " << this->getConversionFactorViscosity() << std::endl; clout << "Force factor(N): physForce= " << this->getConversionFactorForce() << std::endl; clout << "Pressure factor(N/m^2): physPressure= " << this->getConversionFactorPressure() << std::endl; clout << "-------------------------------------------------------------" << std::endl; clout << "----------------- ThermalConversion factors:-----------------" << std::endl; clout << "Temperature(K): temperature= " << getConversionFactorTemperature() << std::endl; clout << "Thermal Duffusity(m^2/s): physThermalDiffusity= " << getConversionFactorThermalDiffusivity() << std::endl; clout << "specific Heat Capacity(J/kg): physSpecificHeatCapacity= " << getConversionFactorSpecificHeatCapacity() << std::endl; clout << "Thermal Coductivity(W/m/K): physThermalCondcticity= " << getConversionFactorThermalConductivity() << std::endl; clout << "HeatFlux(W): physHeatFlux= " << getConversionFactorHeatFlux() << std::endl; clout << "-------------------------------------------------------------" << std::endl; } /* template void ThermalUnitConverter::writeDatFile(std::string const& title) const { std::string dataFile = singleton::directories().getLogOutDir() + title + ".dat"; if (singleton::mpi().isMainProcessor()) { std::ofstream fout; fout.open(dataFile.c_str(), std::ios::trunc); fout << "----------------- ThermalUnitConverter information -----------------" << std::endl; fout << "-- Parameters:" << std::endl; fout << "Phys. Delta X: physDeltaX= " << getPhysDeltaX() << std::endl; fout << "Phys. Delta T: physDeltaT= " << getPhysDeltaT() << std::endl; fout << "Characteristical pressure(N/m^2): charPressure= " << getCharPhysPressure() << std::endl; fout << "Phys. Thermal Conductivity: physThermalCondcticity= " << getPhysThermalCondcticity() << std::endl; fout << "Phys. specific Heat Capacity: physSpecificHeatCapacity= " << getPhysSpecificHeatCapacity() << std::endl; fout << "Phys. Thermal Expasion Coefficent physThermalExpansionCoefficent= " << getPhysThermalExpasionCoefficent << std::endl; fout << "Characteristical Phys. low Temperature charPhysLowTemperature= " << getCharPhysLowTemperature << std::endl; fout << "Characteristical Phys. high Temperature charPhysHighTemperature= " << getCharPhysHighTemperature << std::endl; fout << std::endl; fout << "-- Conversion factors:" << std::endl; fout << "Temperature: temperature= " << getConversionFactorTemperature() << std::endl; fout << "Thermal Duffusity: physThermalDiffusity= " << getConversionFactorThermalDiffusivity() << std::endl; fout << "specific Heat Capacity: physSpecificHeatCapacity= " << getConversionFactorSpecificHeatCapacity() << std::endl; fout << "Thermal Coductivity: physThermalCondcticity= " << getConversionFactorThermalConductivity() << std::endl; fout << "HeatFlux: physHeatFlux= " << getConversionFactorHeatFlux() << std::endl; fout << "-------------------------------------------------------------" << std::endl; fout.close(); } } */ /* template ThermalUnitConverter* createThermalUnitConverter(XMLreader const& params) { OstreamManager clout(std::cout,"createThermalUnitConverter"); params.setWarningsOn(false); T physDeltaX; T physDeltaT; T charPhysHighTemperature; T charPhysLowTemperature; T physThermalCondcticity; T physDensity; T charPhysPressure = 0; int resolution; T latticeRelaxationTime; T charLatticeVelocity; // params[parameter].read(value) sets the value or returns false if the parameter can not be found params["Application"]["ThermalPhysParameters"]["CharPhysLowTemperature"].read(charPhysLowTemperature); params["Application"]["ThermalPhysParameters"]["charPhysHighTemperature"].read(charPhysHighTemperature); params["Application"]["ThermalPhysParameters"]["PhysThermalCondcticity"].read(physThermalCondcticity); params["Application"]["ThermalPhysParameters"]["PhysDensity"].read(physDensity); params["Application"]["ThermalPhysParameters"]["CharPhysPressure"].read(charPhysPressure); if (!params["Application"]["Discretization"]["PhysDeltaX"].read(physDeltaX,false)) { if (!params["Application"]["Discretization"]["Resolution"].read(resolution,false)) { if (!params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) { // NOT found physDeltaX, resolution or charLatticeVelocity clout << "Error: Have not found PhysDeltaX, Resolution or CharLatticeVelocity in XML file." << std::endl; exit (1); } else { // found charLatticeVelocity if (params["Application"]["Discretization"]["PhysDeltaT"].read(physDeltaT,false)) { physDeltaX = charPhysVelocity / charLatticeVelocity * physDeltaT; } else if (params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) { physDeltaX = physViscosity * charLatticeVelocity / charPhysVelocity * descriptors::invCs2() / (latticeRelaxationTime - 0.5); } } } else { // found resolution physDeltaX = charPhysLength / resolution; } } // found physDeltaX if (!params["Application"]["Discretization"]["PhysDeltaT"].read(physDeltaT,false)) { if (!params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) { if (!params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) { // NOT found physDeltaT, latticeRelaxationTime and charLatticeVelocity clout << "Error: Have not found PhysDeltaT, LatticeRelaxationTime or CharLatticeVelocity in XML file." << std::endl; exit (1); } else { // found charLatticeVelocity physDeltaT = charLatticeVelocity / charPhysVelocity * physDeltaX; } } else { // found latticeRelaxationTime physDeltaT = (latticeRelaxationTime - 0.5) / descriptors::invCs2() * physDeltaX * physDeltaX / physViscosity; } } return new ThermalUnitConverter(physDeltaX, physDeltaT, charPhysLength, charPhysVelocity, physViscosity, physDensity,T physThermalConductivity,T physSpecificHeatCapacity,T physThermalExpansionCoefficient,T charPhysLowTemperature,T charPhysHighTemperature, charPhysPressure); }*/ } // namespace olb #endif