/* This file is part of the OpenLB library
*
* Copyright (C) 2017 Max Gaedtke, Albert Mink
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef UNITCONVERTER_HH
#define UNITCONVERTER_HH
#include
#include
#include
#include "core/singleton.h"
#include "io/fileName.h"
#include "unitConverter.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
template
void UnitConverter::print() const
{
clout << "----------------- UnitConverter information -----------------" << std::endl;
clout << "-- Parameters:" << std::endl;
clout << "Resolution: N= " << getResolution() << std::endl;
clout << "Lattice velocity: latticeU= " << getCharLatticeVelocity() << std::endl;
clout << "Lattice relaxation frequency: omega= " << getLatticeRelaxationFrequency( ) << std::endl;
clout << "Lattice relaxation time: tau= " << getLatticeRelaxationTime() << std::endl;
clout << "Characteristical length(m): charL= " << getCharPhysLength() << std::endl;
clout << "Characteristical speed(m/s): charU= " << getCharPhysVelocity() << std::endl;
clout << "Phys. kinematic viscosity(m^2/s): charNu= " << getPhysViscosity() << std::endl;
clout << "Phys. density(kg/m^d): charRho= " << getPhysDensity() << std::endl;
clout << "Characteristical pressure(N/m^2): charPressure= " << getCharPhysPressure() << std::endl;
clout << "Mach number: machNumber= " << getMachNumber() << std::endl;
clout << "Reynolds number: reynoldsNumber= " << getReynoldsNumber() << std::endl;
clout << "Knudsen number: knudsenNumber= " << getKnudsenNumber() << std::endl;
clout << std::endl;
clout << "-- Conversion factors:" << std::endl;
clout << "Voxel length(m): physDeltaX= " << getConversionFactorLength() << std::endl;
clout << "Time step(s): physDeltaT= " << getConversionFactorTime() << std::endl;
clout << "Velocity factor(m/s): physVelocity= " << getConversionFactorVelocity() << std::endl;
clout << "Density factor(kg/m^3): physDensity= " << getConversionFactorDensity() << std::endl;
clout << "Mass factor(kg): physMass= " << getConversionFactorMass() << std::endl;
clout << "Viscosity factor(m^2/s): physViscosity= " << getConversionFactorViscosity() << std::endl;
clout << "Force factor(N): physForce= " << getConversionFactorForce() << std::endl;
clout << "Pressure factor(N/m^2): physPressure= " << getConversionFactorPressure() << std::endl;
clout << "-------------------------------------------------------------" << std::endl;
}
template
void UnitConverter::write(std::string const& fileName) const
{
std::string dataFile = singleton::directories().getLogOutDir() + fileName + ".dat";
if (singleton::mpi().isMainProcessor())
{
std::ofstream fout;
fout.open(dataFile.c_str(), std::ios::trunc);
fout << "UnitConverter information\n\n";
fout << "----------------- UnitConverter information -----------------\n";
fout << "-- Parameters:" << std::endl;
fout << "Resolution: N= " << getResolution() << "\n";
fout << "Lattice velocity: latticeU= " << getCharLatticeVelocity() << "\n";
fout << "Lattice relaxation frequency: omega= " << getLatticeRelaxationFrequency( ) << std::endl;
fout << "Lattice relaxation time: tau= " << getLatticeRelaxationTime() << "\n";
fout << "Characteristical length(m): charL= " << getCharPhysLength() << "\n";
fout << "Characteristical speed(m/s): charU= " << getCharPhysVelocity() << "\n";
fout << "Phys. kinematic viscosity(m^2/s): charNu= " << getPhysViscosity() << "\n";
fout << "Phys. density(kg/m^d): charRho= " << getPhysDensity() << "\n";
fout << "Characteristical pressure(N/m^2): charPressure= " << getCharPhysPressure() << "\n";
fout << "Mach number: machNumber= " << getMachNumber() << "\n";
fout << "Reynolds number: reynoldsNumber= " << getReynoldsNumber() << "\n";
fout << "Knudsen number: knudsenNumber= " << getKnudsenNumber() << std::endl;
fout << "\n";
fout << "-- Conversion factors:" << "\n";
fout << "Voxel length(m): physDeltaX= " << getConversionFactorLength() << std::endl;
fout << "Time step(s): physDeltaT= " << getConversionFactorTime() << "\n";
fout << "Velocity factor(m/s): physVelocity= " << getConversionFactorVelocity() << "\n";
fout << "Density factor(kg/m^3): physDensity= " << getConversionFactorDensity() << "\n";
fout << "Mass factor(kg): physMass= " << getConversionFactorMass() << "\n";
fout << "Viscosity factor(m^2/s): physViscosity= " << getConversionFactorViscosity() << "\n";
fout << "Force factor(N): physForce= " << getConversionFactorForce() << "\n";
fout << "Pressure factor(N/m^2): physPressure= " << getConversionFactorPressure() << "\n";
fout << "-------------------------------------------------------------" << "\n";
fout.close();
}
}
template
UnitConverter* createUnitConverter(XMLreader const& params)
{
OstreamManager clout(std::cout,"createUnitConverter");
params.setWarningsOn(false);
T physDeltaX;
T physDeltaT;
T charPhysLength;
T charPhysVelocity;
T physViscosity;
T physDensity;
T charPhysPressure = 0;
int resolution;
T latticeRelaxationTime;
T charLatticeVelocity;
// params[parameter].read(value) sets the value or returns false if the parameter can not be found
params["Application"]["PhysParameters"]["CharPhysLength"].read(charPhysLength);
params["Application"]["PhysParameters"]["CharPhysVelocity"].read(charPhysVelocity);
params["Application"]["PhysParameters"]["PhysViscosity"].read(physViscosity);
params["Application"]["PhysParameters"]["PhysDensity"].read(physDensity);
params["Application"]["PhysParameters"]["CharPhysPressure"].read(charPhysPressure);
if (!params["Application"]["Discretization"]["PhysDeltaX"].read(physDeltaX,false)) {
if (!params["Application"]["Discretization"]["Resolution"].read(resolution,false)) {
if (!params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) {
// NOT found physDeltaX, resolution or charLatticeVelocity
clout << "Error: Have not found PhysDeltaX, Resolution or CharLatticeVelocity in XML file."
<< std::endl;
exit (1);
}
else {
// found charLatticeVelocity
if (params["Application"]["Discretization"]["PhysDeltaT"].read(physDeltaT,false)) {
physDeltaX = charPhysVelocity / charLatticeVelocity * physDeltaT;
}
else if (params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) {
physDeltaX = physViscosity * charLatticeVelocity / charPhysVelocity * descriptors::invCs2() / (latticeRelaxationTime - 0.5);
}
}
}
else {
// found resolution
physDeltaX = charPhysLength / resolution;
if (params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) {
latticeRelaxationTime = physViscosity * charLatticeVelocity * descriptors::invCs2() * resolution + 0.5;
}
else {
if (!params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) {
clout << "Error: Have not found LatticeRelaxationTime and was not able to derive it using CharLatticeVelocity"
<< std::endl;
exit (1);
}
}
}
}
// found physDeltaX
if (!params["Application"]["Discretization"]["PhysDeltaT"].read(physDeltaT,false)) {
if (!params["Application"]["Discretization"]["LatticeRelaxationTime"].read(latticeRelaxationTime,false)) {
if (!params["Application"]["Discretization"]["CharLatticeVelocity"].read(charLatticeVelocity,false)) {
// NOT found physDeltaT, latticeRelaxationTime and charLatticeVelocity
clout << "Error: Have not found PhysDeltaT, LatticeRelaxationTime or CharLatticeVelocity in XML file."
<< std::endl;
exit (1);
}
else {
// found charLatticeVelocity
physDeltaT = charLatticeVelocity / charPhysVelocity * physDeltaX;
}
}
else {
// found latticeRelaxationTime
physDeltaT = (latticeRelaxationTime - 0.5) / descriptors::invCs2() * physDeltaX * physDeltaX / physViscosity;
}
}
return new UnitConverter(physDeltaX, physDeltaT, charPhysLength, charPhysVelocity, physViscosity, physDensity, charPhysPressure);
}
} // namespace olb
#endif