/* This file is part of the OpenLB library
*
* Copyright (C) 2012, 2015 Mathias J. Krause, Vojtech Cvrcekt, Davide Dapelo
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Porous-particle BGK Dynamics with adjusted omega
* and Smagorinsky turbulence model -- generic implementation.
* Strain rate similar to "J.Boyd, J. Buick and S.Green: A second-order accurate lattice Boltzmann non-Newtonian flow model"
* Power Law similar to "Huidan Yu, Sharath S. Girimaji, Li-Shi Luo - DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method"
*/
#ifndef SMAGORINSKY_POWER_LAW_BGK_DYNAMICS_HH
#define SMAGORINSKY_POWER_LAW_BGK_DYNAMICS_HH
#include "../dynamics/powerLawBGKdynamics.h"
#include "SmagorinskyPowerLawBGKdynamics.h"
#include "math.h"
namespace olb {
////////////////////// Class SmagorinskyPowerLawBGKdynamics //////////////////////////
/** \param vs2_ speed of sound
* \param momenta_ a Momenta object to know how to compute velocity momenta
* \param momenta_ a Momenta object to know how to compute velocity momenta
*/
template
SmagorinskyPowerLawBGKdynamics::SmagorinskyPowerLawBGKdynamics (
T omega, Momenta& momenta, T m, T n , T nuMin, T nuMax, T smagoConst)
: SmagorinskyBGKdynamics(omega, momenta, smagoConst),
PowerLawDynamics(m, n, nuMin, nuMax)
{ }
template
void SmagorinskyPowerLawBGKdynamics::collide (
Cell& cell,
LatticeStatistics& statistics )
{
T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n];
this->_momenta.computeAllMomenta(cell, rho, u, pi);
// Computation of the power-law omega.
// An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
T oldOmega = cell.template getFieldPointer()[0];
T intOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
T newOmega = computeEffectiveOmega(cell, intOmega); // turbulent omega
T uSqr = lbHelpers::bgkCollision(cell, rho, u, newOmega);
cell.template getFieldPointer()[0] = intOmega; // updating omega
statistics.incrementStats(rho, uSqr);
}
template
T SmagorinskyPowerLawBGKdynamics::computeEffectiveOmega(Cell& cell, T omega0)
{
T rho = this->_momenta.computeRho(cell);
T PiNeqNorm = sqrt(PiNeqNormSqr(cell));
/// Molecular realaxation time
T tau_mol = 1. /omega0;
/// Turbulent realaxation time
T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + this->getPreFactor()/rho*PiNeqNorm) - tau_mol);
/// Effective realaxation time
T tau_eff = tau_mol+tau_turb;
T omega_new= 1./tau_eff;
return omega_new;
}
template
T SmagorinskyPowerLawBGKdynamics::PiNeqNormSqr(Cell& cell )
{
return lbHelpers::computePiNeqNormSqr(cell);
}
////////////////////// Class SmagorinskyPowerLawForcedBGKdynamics //////////////////////////
/** \param vs2_ speed of sound
* \param momenta_ a Momenta object to know how to compute velocity momenta
* \param momenta_ a Momenta object to know how to compute velocity momenta
*/
template
SmagorinskyPowerLawForcedBGKdynamics::SmagorinskyPowerLawForcedBGKdynamics (
T omega, Momenta& momenta, T m, T n , T nuMin, T nuMax, T smagoConst)
: SmagorinskyForcedBGKdynamics(omega, momenta, smagoConst),
PowerLawDynamics(m, n, nuMin, nuMax)
{ }
template
void SmagorinskyPowerLawForcedBGKdynamics::collide (
Cell& cell,
LatticeStatistics& statistics )
{
T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n];
this->_momenta.computeAllMomenta(cell, rho, u, pi);
// Computation of the power-law omega.
// An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
T oldOmega = cell.template getFieldPointer()[0];
T intOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
T newOmega = computeEffectiveOmega(cell, intOmega); // turbulent omega
T* force = cell.template getFieldPointer();
for (int iVel=0; iVel::bgkCollision(cell, rho, u, newOmega);
cell.template getFieldPointer()[0] = intOmega; // updating omega
lbHelpers::addExternalForce(cell, u, newOmega, rho);
statistics.incrementStats(rho, uSqr);
}
template
T SmagorinskyPowerLawForcedBGKdynamics::computeEffectiveOmega(Cell& cell, T omega0)
{
T rho = this->_momenta.computeRho(cell);
T PiNeqNorm = sqrt(PiNeqNormSqr(cell));
/// Molecular realaxation time
T tau_mol = 1. /omega0;
/// Turbulent realaxation time
T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + this->getPreFactor()/rho*PiNeqNorm) - tau_mol);
/// Effective realaxation time
T tau_eff = tau_mol+tau_turb;
T omega_new= 1./tau_eff;
return omega_new;
}
template
T SmagorinskyPowerLawForcedBGKdynamics::PiNeqNormSqr(Cell& cell )
{
return lbHelpers::computeForcedPiNeqNormSqr(cell);
}
}
#endif