/* This file is part of the OpenLB library * * Copyright (C) 2012, 2015 Mathias J. Krause, Vojtech Cvrcekt, Davide Dapelo * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * Porous-particle BGK Dynamics with adjusted omega * and Smagorinsky turbulence model -- generic implementation. * Strain rate similar to "J.Boyd, J. Buick and S.Green: A second-order accurate lattice Boltzmann non-Newtonian flow model" * Power Law similar to "Huidan Yu, Sharath S. Girimaji, Li-Shi Luo - DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method" */ #ifndef SMAGORINSKY_POWER_LAW_POROUS_BGK_DYNAMICS_HH #define SMAGORINSKY_POWER_LAW_POROUS_BGK_DYNAMICS_HH #include "SmagorinskyPowerLawPorousBGKdynamics.h" #include "SmagorinskyPorousParticleBGKdynamics.hh" #include "math.h" namespace olb { ////////////////////// Class SmagorinskyPowerLawPorousParticleBGKdynamics ////////////////////////// /** \param vs2_ speed of sound * \param momenta_ a Momenta object to know how to compute velocity momenta * \param momenta_ a Momenta object to know how to compute velocity momenta */ template SmagorinskyPowerLawPorousParticleBGKdynamics::SmagorinskyPowerLawPorousParticleBGKdynamics ( T omega_, Momenta& momenta_, T m_, T n_ , T dtPL_, T nuMin, T nuMax, T smagoConst_) : SmagorinskyPorousParticleBGKdynamics(omega_,momenta_,smagoConst_), m(m_), n(n_), dtPL(dtPL_) //preFactor(computePreFactor(omega_,smagoConstPL_) ) { omegaMin = 2./(nuMax*2.*descriptors::invCs2() + 1.); omegaMax = 2./(nuMin*2.*descriptors::invCs2() + 1.); } template void SmagorinskyPowerLawPorousParticleBGKdynamics::collide ( Cell& cell, LatticeStatistics& statistics ) { T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n]; this->_momenta.computeAllMomenta(cell, rho, u, pi); // load old omega from dyn. omega descriptor // T oldOmega = this->getOmega(); //compute with constant omega T oldOmega = cell.template getFieldPointer()[0]; //compute with dynamic omega T OmegaPL = computeOmegaPL(oldOmega, rho, pi); T* velDenominator = cell.template getFieldPointer(); T* velNumerator = cell.template getFieldPointer(); T* porosity = cell.template getFieldPointer(); if (*velDenominator > std::numeric_limits::epsilon()) { *porosity = 1.-*porosity; // 1-prod(1-smoothInd) for (int i=0; i < DESCRIPTOR::d; i++) { u[i] += *porosity * (*(velNumerator+i) / *velDenominator - u[i]); } } T newOmega = this->computeOmega(OmegaPL, this->preFactor, rho, pi); T uSqr = lbHelpers::bgkCollision(cell, rho, u, newOmega); // save new omega to dyn. omega descriptor cell.template getFieldPointer()[0] = newOmega; //compute with dynamic omega statistics.incrementStats(rho, uSqr); cell.template defineField(1.0); cell.template defineField(0.0); cell.template defineField(0.0); } template T SmagorinskyPowerLawPorousParticleBGKdynamics::computeOmegaPL(T omega0, T rho, T pi[util::TensorVal::n] ) { // strain rate tensor without prefactor T PiNeqNormSqr = pi[0]*pi[0] + 2.*pi[1]*pi[1] + pi[2]*pi[2]; if (util::TensorVal::n == 6) { PiNeqNormSqr += pi[2]*pi[2] + pi[3]*pi[3] + 2.*pi[4]*pi[4] +pi[5]*pi[5]; } T pre2 = pow(descriptors::invCs2()/2./dtPL* omega0/rho,2.); // prefactor to the strain rate tensor T D = pre2*PiNeqNormSqr; // Strain rate tensor T gamma = sqrt(2.*D); // shear rate T nuNew = m*pow(gamma,n-1.); //nu for non-Newtonian fluid //T newOmega = 2./(nuNew*6.+1.); T newOmega = 2./(nuNew*2.*descriptors::invCs2() + 1.); /* * problem if newOmega too small or too big is see e.g. "Daniel Conrad , Andreas Schneider, Martin Böhle: * A viscosity adaption method for Lattice Boltzmann simulations" */ //if (newOmega>1.965) { // newOmega = 1.965; //std::cout << newOmega << std::endl; //} //if (newOmega<0.1) { // newOmega = 0.1; //std::cout << newOmega << std::endl; //} if (newOmega>omegaMax) { newOmega = omegaMax; //std::cout << newOmega << std::endl; } if (newOmega