/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007, 2017 Orestis Malaspinas, Jonas Latt, Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * A collection of entropic dynamics classes (e.g. EntropicEq, * ForcedEntropicEq, Entropic, ForcedEntropic) with which a Cell object * can be instantiated -- header file. * * Entropic Modell: * Ansumali, Santosh, Iliya V. Karlin, and Hans Christian Öttinger * Minimal entropic kinetic models for hydrodynamics * EPL (Europhysics Letters) 63.6 (2003): 798 */ #ifndef ENTROPIC_LB_DYNAMICS_H #define ENTROPIC_LB_DYNAMICS_H #include "dynamics/dynamics.h" namespace olb { template class Cell; /// Implementation of the entropic collision step template class EntropicEqDynamics : public BasicDynamics { public: /// Constructor EntropicEqDynamics(T omega_, Momenta& momenta_); /// Compute equilibrium distribution function T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override; /// Collision step void collide(Cell& cell, LatticeStatistics& statistics_) override; /// Get local relaxation parameter of the dynamics T getOmega() const override; /// Set local relaxation parameter of the dynamics void setOmega(T omega_) override; private: T omega; ///< relaxation parameter }; /// Implementation of the forced entropic collision step template class ForcedEntropicEqDynamics : public BasicDynamics { public: /// Constructor ForcedEntropicEqDynamics(T omega_, Momenta& momenta_); /// Compute equilibrium distribution function virtual T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const; /// Collision step virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// Get local relaxation parameter of the dynamics virtual T getOmega() const; /// Set local relaxation parameter of the dynamics virtual void setOmega(T omega_); private: T omega; ///< relaxation parameter }; /// Implementation of the entropic collision step template class EntropicDynamics : public BasicDynamics { public: /// Constructor EntropicDynamics(T omega_, Momenta& momenta_); /// Compute equilibrium distribution function T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override; /// Collision step void collide(Cell& cell, LatticeStatistics& statistics_) override; /// Get local relaxation parameter of the dynamics T getOmega() const override; /// Set local relaxation parameter of the dynamics void setOmega(T omega_) override; private: /// computes the entropy function H(f)=sum_i f_i*ln(f_i/t_i) T computeEntropy(const T f[]); /// computes the entropy growth H(f)-H(f-alpha*fNeq) T computeEntropyGrowth(const T f[], const T fNeq[], const T &alpha); /// computes the entropy growth derivative /// dH/dalpha=-sum_i fNeq_i*ln((f_i-alpha*fNeq_i)/t_i) T computeEntropyGrowthDerivative(const T f[], const T fNeq[], const T &alpha); /// Get the alpha parameter bool getAlpha(T &alpha, const T f[], const T fNeq[]); T omega; ///< relaxation parameter }; /// Implementation of the forced entropic collision step template class ForcedEntropicDynamics : public BasicDynamics { public: /// Constructor ForcedEntropicDynamics(T omega_, Momenta& momenta_); /// Compute equilibrium distribution function virtual T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const; /// Collision step virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// Get local relaxation parameter of the dynamics virtual T getOmega() const; /// Set local relaxation parameter of the dynamics virtual void setOmega(T omega_); private: /// computes the entropy function H(f)=sum_i f_i*ln(f_i/t_i) T computeEntropy(const T f[]); /// computes the entropy growth H(f)-H(f-alpha*fNeq) T computeEntropyGrowth(const T f[], const T fNeq[], const T &alpha); /// computes the entropy growth derivative /// dH/dalpha=-sum_i fNeq_i*ln((f_i-alpha*fNeq_i)/t_i) T computeEntropyGrowthDerivative(const T f[], const T fNeq[], const T &alpha); /// Get the alpha parameter bool getAlpha(T &alpha, const T f[], const T fNeq[]); T omega; ///< relaxation parameter }; } #endif