/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007, 2013 Jonas Latt, Mathias J. Krause, Geng Liu * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * Helper functions for the implementation of LB dynamics. This file is all * about efficiency. The generic template code is specialized for commonly * used Lattices, so that a maximum performance can be taken out of each * case. */ #ifndef MRT_HELPERS_H #define MRT_HELPERS_H #include "lbHelpers.h" #include "mrtLatticeDescriptors.h" namespace olb { /// All helper functions are inside this structure template struct mrtHelpers { static_assert( std::is_same::value, "DESCRIPTOR is tagged as MRT"); /// Computation of equilibrium distribution (in momenta space) static T equilibrium( int iPop, T rho, const T u[DESCRIPTOR::d], const T uSqr ) { T equ = T(); for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) { equ += descriptors::m(iPop,jPop) * (lbHelpers::equilibrium(jPop,rho,u,uSqr) + descriptors::t(jPop)); } return equ; } /// Computation of all equilibrium distribution (in momenta space) static void computeEquilibrium( T momentaEq[DESCRIPTOR::q], T rho, const T u[DESCRIPTOR::d], const T uSqr ) { for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) { momentaEq[iPop] = T(); for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) { momentaEq[iPop] += descriptors::m(iPop,jPop) * (lbHelpers::equilibrium(jPop,rho,u,uSqr) + descriptors::t(jPop)); } } } static void computeMomenta(T momenta[DESCRIPTOR::q], Cell &cell) { for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) { momenta[iPop] = T(); for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) { momenta[iPop] += descriptors::m(iPop,jPop) * (cell[jPop] + descriptors::t(jPop)); } } } /// MRT collision step static T mrtCollision( Cell& cell, T rho, const T u[DESCRIPTOR::d], T invM_S[DESCRIPTOR::q][DESCRIPTOR::q]) { T uSqr = util::normSqr(u); T momenta[DESCRIPTOR::q]; T momentaEq[DESCRIPTOR::q]; computeMomenta(momenta,cell); computeEquilibrium(momentaEq,rho,u,uSqr); for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { T collisionTerm = T(); for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) { collisionTerm += invM_S[iPop][jPop] * (momenta[jPop] - momentaEq[jPop]); } cell[iPop] -= collisionTerm; } return uSqr; } /// MRT SGS collision step static T mrtSGSCollision( Cell& cell, T rho, const T u[DESCRIPTOR::d], T omega, T invM_S_SGS[DESCRIPTOR::q][DESCRIPTOR::q]) { T uSqr = util::normSqr(u); T momenta[DESCRIPTOR::q]; T momentaEq[DESCRIPTOR::q]; computeMomenta(momenta,cell); computeEquilibrium(momentaEq,rho,u,uSqr); for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { T collisionTerm = T(); for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) { collisionTerm += invM_S_SGS[iPop][jPop] * (momenta[jPop] - momentaEq[jPop]); } cell[iPop] -= collisionTerm; } return uSqr; } /// Ladd-Verberg-I body force model for MRT /// A.Ladd, R. Verberg, DESCRIPTOR-Boltzmann simulations of particle-fluid suspensions, Journal of Statistical Physics 104(2001) static void addExternalForce( Cell& cell, T rho, const T u[DESCRIPTOR::d], T invM_S[DESCRIPTOR::q][DESCRIPTOR::q]) { T* force = cell.template getFieldPointer(); T f_u = T(); for (int iD=0; iD < DESCRIPTOR::d; ++iD) { f_u += force[iD]*u[iD]; } for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { T c_u = T(); T c_f = T(); for (int iD=0; iD < DESCRIPTOR::d; ++iD) { c_u += descriptors::c(iPop,iD)*u[iD]; c_f += descriptors::c(iPop,iD)*force[iD]; } T f1 = descriptors::t(iPop)*rho*c_f*descriptors::invCs2(); T f2 = descriptors::t(iPop)*rho*(c_u*c_f*descriptors::invCs2()-f_u)*descriptors::invCs2(); T invMsM = T(); for (int jPop=0; jPop < DESCRIPTOR::q; ++jPop) { invMsM += invM_S[iPop][jPop]*descriptors::m(jPop,iPop); } cell[iPop] += f1 + f2 - invMsM*f2/2.; } return; } }; // struct mrtHelpers } // namespace olb // The specialized code is directly included. That is because we never want // it to be precompiled so that in both the precompiled and the // "include-everything" version, the compiler can apply all the // optimizations it wants. #include "mrtHelpers2D.h" #include "mrtHelpers3D.h" #endif