/* This file is part of the OpenLB library * * Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani, Jonas Latt * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef NAVIER_STOKES_INTO_ADVECTION_DIFFUSION_MRT_COUPLING_POST_PROCESSOR_3D_HH #define NAVIER_STOKES_INTO_ADVECTION_DIFFUSION_MRT_COUPLING_POST_PROCESSOR_3D_HH #include "latticeDescriptors.h" #include "navierStokesAdvectionDiffusionMRTCouplingPostProcessor3D.h" #include "core/blockLattice3D.h" #include "core/util.h" #include "core/finiteDifference3D.h" #include "advectionDiffusionForces.hh" #include "advectionDiffusionForces.h" namespace olb { //===================================================================================== //============== NavierStokesAdvectionDiffusionMRTCouplingPostProcessor3D =========== //===================================================================================== template NavierStokesAdvectionDiffusionMRTCouplingPostProcessor3D:: NavierStokesAdvectionDiffusionMRTCouplingPostProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T gravity_, T T0_, T deltaTemp_, std::vector dir_, std::vector partners_) : x0(x0_), x1(x1_), y0(y0_), y1(y1_), z0(z0_), z1(z1_), gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_), dir(dir_), partners(partners_) { // we normalize the direction of force vector T normDir = T(); for (unsigned iD = 0; iD < dir.size(); ++iD) { normDir += dir[iD]*dir[iD]; } normDir = sqrt(normDir); for (unsigned iD = 0; iD < dir.size(); ++iD) { dir[iD] /= normDir; } } template void NavierStokesAdvectionDiffusionMRTCouplingPostProcessor3D:: processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_) { typedef DESCRIPTOR L; enum {x,y,z}; enum { velOffset = descriptors::AdvectionDiffusionMRTD3Q7Descriptor::template index(), forceOffset = DESCRIPTOR::template index() }; BlockLattice3D *tPartner = dynamic_cast *>(partners[0]); int newX0, newX1, newY0, newY1, newZ0, newZ1; if ( util::intersect ( x0, x1, y0, y1, z0, z1, x0_, x1_, y0_, y1_, z0_, z1_, newX0, newX1, newY0, newY1, newZ0, newZ1 ) ) { for (int iX=newX0; iX<=newX1; ++iX) { for (int iY=newY0; iY<=newY1; ++iY) { for (int iZ=newZ0; iZ<=newZ1; ++iZ) { // Velocity coupling T *u = tPartner->get(iX,iY,iZ).template getFieldPointer(); blockLattice.get(iX,iY,iZ).computeU(u); //coupling between the temperature and navier stokes. T *force = blockLattice.get(iX,iY,iZ).template getFieldPointer(); T temperature = tPartner->get(iX,iY,iZ).computeRho(); T rho = blockLattice.get(iX,iY,iZ).computeRho(); for (unsigned iD = 0; iD < L::d; ++iD) { force[iD] = gravity * rho * (temperature - T0) / deltaTemp * dir[iD]; } } } } } } template void NavierStokesAdvectionDiffusionMRTCouplingPostProcessor3D:: process(BlockLattice3D& blockLattice) { processSubDomain(blockLattice, x0, x1, y0, y1, z0, z1); } //===================================================================================== //============== StokesDragCouplingPostProcessor3D =========== //===================================================================================== template AdvectionDiffusionParticleMRTCouplingPostProcessor3D:: AdvectionDiffusionParticleMRTCouplingPostProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int iC_, int offset_, std::vector partners_, std::vector > > forces_) : x0(x0_), x1(x1_), y0(y0_), y1(y1_), z0(z0_), z1(z1_), iC(iC_), offset(offset_), forces(forces_) { BlockLattice3D *partnerLattice = dynamic_cast *>(partners_[0]); adCell = &partnerLattice->get(x0,y0,z0); vel = partnerLattice->get(x0,y0,z0)[offset]; vel_new = partnerLattice->get(x0,y0,z0)[offset]; velXp = partnerLattice->get(x0+1,y0,z0)[offset]; velXn = partnerLattice->get(x0-1,y0,z0)[offset]; velYp = partnerLattice->get(x0,y0+1,z0)[offset]; velYn = partnerLattice->get(x0,y0-1,z0)[offset]; velZp = partnerLattice->get(x0,y0,z0+1)[offset]; velZn = partnerLattice->get(x0,y0,z0-1)[offset]; } template void AdvectionDiffusionParticleMRTCouplingPostProcessor3D:: processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_) { int newX0, newX1, newY0, newY1, newZ0, newZ1; int off = (par) ? 3 : 0; int off2 = (par) ? 0 : 3; if ( util::intersect ( x0, x1, y0, y1, z0, z1, x0_, x1_, y0_, y1_, z0_, z1_, newX0, newX1, newY0, newY1, newZ0, newZ1 ) ) { for (int iX=newX0; iX<=newX1; ++iX) { for (int iY=newY0; iY<=newY1; ++iY) { for (int iZ=newZ0; iZ<=newZ1; ++iZ) { int latticeR[4] = {iC, iX, iY, iZ}; T velGrad[3] = {0.,0.,0.}; T forceValue[3] = {0.,0.,0.}; T velF[3] = {0.,0.,0.}; nsCell = &(blockLattice.get(iX,iY,iZ)); //.computeU(velF); if (forces.begin() != forces.end()) { // calculating upwind Gradient if (vel[0+off]<0.) { velGrad[0] = vel[0+off]*(velXp[0+off]-vel[0+off]); velGrad[1] = vel[0+off]*(velXp[1+off]-vel[1+off]); velGrad[2] = vel[0+off]*(velXp[2+off]-vel[2+off]); } else { velGrad[0] = vel[0+off]*(vel[0+off]-velXn[0+off]); velGrad[1] = vel[0+off]*(vel[1+off]-velXn[1+off]); velGrad[2] = vel[0+off]*(vel[2+off]-velXn[2+off]); } if (vel[1+off]<0.) { velGrad[0] += vel[1+off]*(velYp[0+off]-vel[0+off]); velGrad[1] += vel[1+off]*(velYp[1+off]-vel[1+off]); velGrad[2] += vel[1+off]*(velYp[2+off]-vel[2+off]); } else { velGrad[0] += vel[1+off]*(vel[0+off]-velYn[0+off]); velGrad[1] += vel[1+off]*(vel[1+off]-velYn[1+off]); velGrad[2] += vel[1+off]*(vel[2+off]-velYn[2+off]); } if (vel[2+off]<0.) { velGrad[0] += vel[2+off]*(velZp[0+off]-vel[0+off]); velGrad[1] += vel[2+off]*(velZp[1+off]-vel[1+off]); velGrad[2] += vel[2+off]*(velZp[2+off]-vel[2+off]); } else { velGrad[0] += vel[2+off]*(vel[0+off]-velZn[0+off]); velGrad[1] += vel[2+off]*(vel[1+off]-velZn[1+off]); velGrad[2] += vel[2+off]*(vel[2+off]-velZn[2+off]); } for (AdvectionDiffusionForce3D& f : forces) { f.applyForce(forceValue, nsCell, adCell, &vel[off], latticeR); } // compute new particle velocity for (int i=0; i < DESCRIPTOR::d; i++) { vel_new[i+off2] = vel[i+off] + forceValue[i] - velGrad[i]; } } else { nsCell->computeU(velF); T scaleFactor = T(1); for (int i = 0; i < DESCRIPTOR::d; i++) { vel_new[i + off2] = velF[i] * scaleFactor; } } } } } } par = !par; } template void AdvectionDiffusionParticleMRTCouplingPostProcessor3D:: process(BlockLattice3D& blockLattice) { processSubDomain(blockLattice, x0, x1, y0, y1, z0, z1); } // LatticeCouplingGenerator for advectionDiffusion coupling template NavierStokesAdvectionDiffusionMRTCouplingGenerator3D:: NavierStokesAdvectionDiffusionMRTCouplingGenerator3D(int x0_, int x1_, int y0_, int y1_,int z0_, int z1_, T gravity_, T T0_, T deltaTemp_, std::vector dir_) : LatticeCouplingGenerator3D(x0_, x1_, y0_, y1_, z0_, z1_), gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_), dir(dir_) { } template PostProcessor3D* NavierStokesAdvectionDiffusionMRTCouplingGenerator3D::generate ( std::vector partners) const { return new NavierStokesAdvectionDiffusionMRTCouplingPostProcessor3D( this->x0,this->x1,this->y0,this->y1,this->z0,this->z1, gravity, T0, deltaTemp, dir,partners); } template LatticeCouplingGenerator3D* NavierStokesAdvectionDiffusionMRTCouplingGenerator3D::clone() const { return new NavierStokesAdvectionDiffusionMRTCouplingGenerator3D(*this); } // LatticeCouplingGenerator for one-way advectionDiffusion coupling with Stokes drag template AdvectionDiffusionParticleMRTCouplingGenerator3D:: AdvectionDiffusionParticleMRTCouplingGenerator3D(int offset_) : LatticeCouplingGenerator3D(0, 0, 0, 0, 0, 0), offset(offset_) { } template PostProcessor3D* AdvectionDiffusionParticleMRTCouplingGenerator3D::generate ( std::vector partners) const { return new AdvectionDiffusionParticleMRTCouplingPostProcessor3D(this->x0,this->x1,this->y0,this->y1,this->z0,this->z1, this->iC, offset, partners, ADforces); } template LatticeCouplingGenerator3D* AdvectionDiffusionParticleMRTCouplingGenerator3D::clone() const { return new AdvectionDiffusionParticleMRTCouplingGenerator3D(*this); } template void AdvectionDiffusionParticleMRTCouplingGenerator3D::addForce( AdvectionDiffusionForce3D &force) { ADforces.push_back(force); } } // namespace olb #endif