/* This file is part of the OpenLB library * * Copyright (C) 2012 Lukas Baron, Mathias J. Krause, Jonas Latt * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * BGK Dynamics for porous media -- header file. */ #ifndef POROUS_BGK_DYNAMICS_H #define POROUS_BGK_DYNAMICS_H #include "dynamics/dynamics.h" #include "core/cell.h" namespace olb { /// Implementation of the BGK collision step for a porosity model template class PorousBGKdynamics : public BGKdynamics { public: /// Constructor PorousBGKdynamics(T omega_, Momenta& momenta_); /// Collision step virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter }; /// Implementation of the BGK collision step for a porosity model enabling /// drag computation template class ExtendedPorousBGKdynamics : public BGKdynamics { public: /// Constructor ExtendedPorousBGKdynamics(T omega_, Momenta& momenta_); /// extended Collision step, computes local drag in a given direction virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter }; /// Implementation of the BGK collision step for subgridscale particles template class SubgridParticleBGKdynamics : public BGKdynamics { public: /// Constructor SubgridParticleBGKdynamics(T omega_, Momenta& momenta_); /// extended Collision step, computes local drag in a given direction virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter T _fieldTmp[4]; }; /* Implementation of the BGK collision for moving porous media (HLBM approach). * As this scheme requires additionla data stored in an external field, * it is meant to be used along with a PorousParticle descriptor. * \param omega Lattice relaxation frequency * \param momenta A standard object for the momenta computation */ template class PorousParticleBGKdynamics : public BGKdynamics { public: /// Constructor PorousParticleBGKdynamics(T omega_, Momenta& momenta_); /// extended Collision step, computes local drag in a given direction virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter /// This structure is used to emulate a "static if" to switch between static and /// dynamic case. It can be replaced by a "constexpr if" when switching to C++17 /// standard. template struct effectiveVelocity { static void calculate(T* pExternal, T* pVelocity); }; }; /// Implementation of the HBGK collision step for a porosity model enabling /// drag computation for many particles /// including the Krause turbulence modell template class KrauseHBGKdynamics : public BGKdynamics { public: /// Constructor KrauseHBGKdynamics(T omega_, Momenta& momenta_, T smagoConst_, T dx_ = 1, T dt_ = 1); /// extended Collision step, computes local drag in a given direction virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: /// Computes a constant prefactor in order to speed up the computation T computePreFactor(T omega_, T smagoConst_); /// Computes the local smagorinsky relaxation parameter void computeOmega(T omega0_, Cell& cell, T preFactor_, T rho_, T u[DESCRIPTOR::d], T newOmega[DESCRIPTOR::q] ); private: T omega; ///< relaxation parameter /// effective collision time based upon Smagorisnky approach T tau_eff; /// Smagorinsky constant T smagoConst; /// Precomputed constant which speeeds up the computation T preFactor; T dx; T dt; T _fieldTmp[4]; }; /// Implementation of the BGK collision step for a porosity model enabling /// drag computation template class ParticlePorousBGKdynamics : public BGKdynamics { public: /// Constructor ParticlePorousBGKdynamics(T omega_, Momenta& momenta_); /// extended Collision step, computes local drag in a given direction virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter }; /// Implementation of the BGK collision step for a small particles enabling /// two way coupling template class SmallParticleBGKdynamics : public BGKdynamics { public: /// Constructor SmallParticleBGKdynamics(T omega_, Momenta& momenta_); /// extended Collision step, computes local drag in a given direction virtual void collide(Cell& cell, LatticeStatistics& statistics_); /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter }; enum Mode {M2, M3}; /// Implementation of the Partially Saturated Method (PSM), /// see Krüger, Timm, et al. The Lattice Boltzmann Method. Springer, 2017. (p.447-451) template class PSMBGKdynamics : public BGKdynamics { public: /// Constructor PSMBGKdynamics(T omega_, Momenta& momenta_, int mode_=0); /// Compute fluid velocity on the cell. void computeU ( Cell const& cell, T u[DESCRIPTOR::d] ) const override; /// Compute fluid velocity and particle density on the cell. void computeRhoU ( Cell const& cell, T& rho, T u[DESCRIPTOR::d]) const override; /// Collision step void collide(Cell& cell, LatticeStatistics& statistics_) override; /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter T paramA; /// speed up parameter Mode mode; }; /// Implementation of the Partially Saturated Method (PSM), /// see Krüger, Timm, et al. The Lattice Boltzmann Method. Springer, 2017. (p.447-451) template class ForcedPSMBGKdynamics : public ForcedBGKdynamics { public: /// Constructor ForcedPSMBGKdynamics(T omega_, Momenta& momenta_, int mode_=0); /// Compute fluid velocity on the cell. void computeU ( Cell const& cell, T u[DESCRIPTOR::d] ) const override; /// Compute fluid velocity and particle density on the cell. void computeRhoU ( Cell const& cell, T& rho, T u[DESCRIPTOR::d]) const override; /// Collision step void collide(Cell& cell, LatticeStatistics& statistics_) override; /// get relaxation parameter T getOmega() const; /// set relaxation parameter void setOmega(T omega_); private: T omega; ///< relaxation parameter T paramA; /// speed up parameter Mode mode; }; } // olb #endif