/* This file is part of the OpenLB library
*
* Copyright (C) 2012, 2015 Mathias J. Krause, Vojtech Cvrcekt, Davide Dapelo
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* BGK Dynamics with adjusted omega -- generic implementation.
* Strain rate similar to "J.Boyd, J. Buick and S.Green: A second-order accurate lattice Boltzmann non-Newtonian flow model"
* Power Law similar to "Huidan Yu, Sharath S. Girimaji, Li-Shi Luo - DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method"
*/
#ifndef POWER_LAW_BGK_DYNAMICS_HH
#define POWER_LAW_BGK_DYNAMICS_HH
#include "dynOmegaLatticeDescriptors.h"
#include "powerLawBGKdynamics.h"
#include "core/cell.h"
#include "core/util.h"
#include "lbHelpers.h"
#include "latticeDescriptors.h"
#include "math.h"
namespace olb {
////////////////////// Class PowerLawDynamics //////////////////////////
template
PowerLawDynamics::PowerLawDynamics (T m, T n , T nuMin, T nuMax)
: _m(m),
_n(n)
{
_omegaMin = 2./(nuMax*2.*descriptors::invCs2() + 1.);
_omegaMax = 2./(nuMin*2.*descriptors::invCs2() + 1.);
}
template
T PowerLawDynamics::computeOmegaPL( Cell& cell, T omega0,
T rho, T pi[util::TensorVal::n] )
{
T pre2 = pow(descriptors::invCs2()/2.* omega0/rho,2.); // strain rate tensor prefactor
T gamma = sqrt(2.*pre2*PiNeqNormSqr(cell)); // shear rate
T nuNew = _m*pow(gamma,_n-1.); //nu for non-Newtonian fluid
T newOmega = 2./(nuNew*2.*descriptors::invCs2() + 1.);
if (newOmega>_omegaMax) {
newOmega = _omegaMax;
}
if (newOmega<_omegaMin) {
newOmega = _omegaMin;
}
return newOmega;
}
////////////////////// Class PowerLawBGKdynamics //////////////////////////
/** \param vs2_ speed of sound
* \param momenta_ a Momenta object to know how to compute velocity momenta
* \param momenta_ a Momenta object to know how to compute velocity momenta
*/
template
PowerLawBGKdynamics::PowerLawBGKdynamics (
T omega, Momenta& momenta, T m, T n , T nuMin, T nuMax)
: BGKdynamics(omega, momenta),
PowerLawDynamics(m, n, nuMin, nuMax)
{ }
template
void PowerLawBGKdynamics::collide (
Cell& cell,
LatticeStatistics& statistics )
{
T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n];
this->_momenta.computeAllMomenta(cell, rho, u, pi);
// Computation of the power-law omega.
// An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
const auto oldOmega = cell.template getField();
const auto newOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
const T uSqr = lbHelpers::bgkCollision(cell, rho, u, newOmega);
cell.template setField(newOmega);
statistics.incrementStats(rho, uSqr);
}
template
T PowerLawBGKdynamics::PiNeqNormSqr(Cell& cell )
{
return lbHelpers::computePiNeqNormSqr(cell);
}
////////////////////// Class ForcedPowerLawBGKdynamics //////////////////////////
/** \param vs2_ speed of sound
* \param momenta_ a Momenta object to know how to compute velocity momenta
* \param momenta_ a Momenta object to know how to compute velocity momenta
*/
template
PowerLawForcedBGKdynamics::PowerLawForcedBGKdynamics (
T omega, Momenta& momenta, T m, T n , T nuMin, T nuMax)
: ForcedBGKdynamics(omega, momenta),
PowerLawDynamics(m, n, nuMin, nuMax)
{ }
template
void PowerLawForcedBGKdynamics::collide (
Cell& cell,
LatticeStatistics& statistics )
{
T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n];
this->_momenta.computeAllMomenta(cell, rho, u, pi);
// Computation of the power-law omega.
// An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
T oldOmega = cell.template getFieldPointer()[0];
T newOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
T* force = cell.template getFieldPointer();
for (int iVel=0; iVel::bgkCollision(cell, rho, u, this->getOmega());
lbHelpers::addExternalForce(cell, u, newOmega, rho);
cell.template getFieldPointer()[0] = newOmega; // updating omega
statistics.incrementStats(rho, uSqr);
}
template
T PowerLawForcedBGKdynamics::PiNeqNormSqr(Cell& cell )
{
return lbHelpers::computeForcedPiNeqNormSqr(cell);
}
}
#endif