/* This file is part of the OpenLB library * * Copyright (C) 2012, 2015 Mathias J. Krause, Vojtech Cvrcekt, Davide Dapelo * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * BGK Dynamics with adjusted omega -- generic implementation. * Strain rate similar to "J.Boyd, J. Buick and S.Green: A second-order accurate lattice Boltzmann non-Newtonian flow model" * Power Law similar to "Huidan Yu, Sharath S. Girimaji, Li-Shi Luo - DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method" */ #ifndef POWER_LAW_BGK_DYNAMICS_HH #define POWER_LAW_BGK_DYNAMICS_HH #include "dynOmegaLatticeDescriptors.h" #include "powerLawBGKdynamics.h" #include "core/cell.h" #include "core/util.h" #include "lbHelpers.h" #include "latticeDescriptors.h" #include "math.h" namespace olb { ////////////////////// Class PowerLawDynamics ////////////////////////// template PowerLawDynamics::PowerLawDynamics (T m, T n , T nuMin, T nuMax) : _m(m), _n(n) { _omegaMin = 2./(nuMax*2.*descriptors::invCs2() + 1.); _omegaMax = 2./(nuMin*2.*descriptors::invCs2() + 1.); } template T PowerLawDynamics::computeOmegaPL( Cell& cell, T omega0, T rho, T pi[util::TensorVal::n] ) { T pre2 = pow(descriptors::invCs2()/2.* omega0/rho,2.); // strain rate tensor prefactor T gamma = sqrt(2.*pre2*PiNeqNormSqr(cell)); // shear rate T nuNew = _m*pow(gamma,_n-1.); //nu for non-Newtonian fluid T newOmega = 2./(nuNew*2.*descriptors::invCs2() + 1.); if (newOmega>_omegaMax) { newOmega = _omegaMax; } if (newOmega<_omegaMin) { newOmega = _omegaMin; } return newOmega; } ////////////////////// Class PowerLawBGKdynamics ////////////////////////// /** \param vs2_ speed of sound * \param momenta_ a Momenta object to know how to compute velocity momenta * \param momenta_ a Momenta object to know how to compute velocity momenta */ template PowerLawBGKdynamics::PowerLawBGKdynamics ( T omega, Momenta& momenta, T m, T n , T nuMin, T nuMax) : BGKdynamics(omega, momenta), PowerLawDynamics(m, n, nuMin, nuMax) { } template void PowerLawBGKdynamics::collide ( Cell& cell, LatticeStatistics& statistics ) { T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n]; this->_momenta.computeAllMomenta(cell, rho, u, pi); // Computation of the power-law omega. // An external is used in place of BGKdynamics::_omega to keep generality and flexibility. const auto oldOmega = cell.template getField(); const auto newOmega = this->computeOmegaPL(cell, oldOmega, rho, pi); const T uSqr = lbHelpers::bgkCollision(cell, rho, u, newOmega); cell.template setField(newOmega); statistics.incrementStats(rho, uSqr); } template T PowerLawBGKdynamics::PiNeqNormSqr(Cell& cell ) { return lbHelpers::computePiNeqNormSqr(cell); } ////////////////////// Class ForcedPowerLawBGKdynamics ////////////////////////// /** \param vs2_ speed of sound * \param momenta_ a Momenta object to know how to compute velocity momenta * \param momenta_ a Momenta object to know how to compute velocity momenta */ template PowerLawForcedBGKdynamics::PowerLawForcedBGKdynamics ( T omega, Momenta& momenta, T m, T n , T nuMin, T nuMax) : ForcedBGKdynamics(omega, momenta), PowerLawDynamics(m, n, nuMin, nuMax) { } template void PowerLawForcedBGKdynamics::collide ( Cell& cell, LatticeStatistics& statistics ) { T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n]; this->_momenta.computeAllMomenta(cell, rho, u, pi); // Computation of the power-law omega. // An external is used in place of BGKdynamics::_omega to keep generality and flexibility. T oldOmega = cell.template getFieldPointer()[0]; T newOmega = this->computeOmegaPL(cell, oldOmega, rho, pi); T* force = cell.template getFieldPointer(); for (int iVel=0; iVel::bgkCollision(cell, rho, u, this->getOmega()); lbHelpers::addExternalForce(cell, u, newOmega, rho); cell.template getFieldPointer()[0] = newOmega; // updating omega statistics.incrementStats(rho, uSqr); } template T PowerLawForcedBGKdynamics::PiNeqNormSqr(Cell& cell ) { return lbHelpers::computeForcedPiNeqNormSqr(cell); } } #endif