/* This file is part of the OpenLB library * * Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani, * Jonas Latt, 2013 Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef SHAN_CHEN_DYN_OMEGA_FORCED_POST_PROCESSOR_3D_HH #define SHAN_CHEN_DYN_OMEGA_FORCED_POST_PROCESSOR_3D_HH #include "shanChenDynOmegaForcedPostProcessor3D.h" #include "interactionPotential.h" #include "core/blockLattice3D.h" #include "core/util.h" #include "core/finiteDifference3D.h" namespace olb { //////// ShanChenDynOmegaForcedPostProcessor3D /////////////////////////////////// template ShanChenDynOmegaForcedPostProcessor3D :: ShanChenDynOmegaForcedPostProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T G_, std::vector rho0_, AnalyticalF1D& iP_, std::vector partners_) : x0(x0_), x1(x1_), y0(y0_), y1(y1_), z0(z0_), z1(z1_), G(G_), rho0(rho0_), interactionPotential(iP_), partners(partners_) { } template ShanChenDynOmegaForcedPostProcessor3D :: ShanChenDynOmegaForcedPostProcessor3D(T G_, std::vector rho0_, AnalyticalF1D& iP_, std::vector partners_) : x0(0), x1(0), y0(0), y1(0), z0(0), z1(0), G(G_), rho0(rho0_), interactionPotential(iP_), partners(partners_) { } template void ShanChenDynOmegaForcedPostProcessor3D:: processSubDomain( BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) { typedef DESCRIPTOR L; BlockLattice3D *partnerLattice = dynamic_cast *>(partners[0]); int newX0, newX1, newY0, newY1, newZ0, newZ1; if ( util::intersect ( x0, x1, y0, y1, z0, z1, x0_, x1_, y0_, y1_, z0_, z1_, newX0, newX1, newY0, newY1, newZ0, newZ1 ) ) { int nx = newX1-newX0+3; // include a one-cell boundary int ny = newY1-newY0+3; // include a one-cell boundary int nz = newZ1-newZ0+3; // include a one-cell boundary int offsetX = newX0-1; int offsetY = newY0-1; int offsetZ = newZ0-1; BlockData3D rhoField1(nx,ny,nz); BlockData3D rhoField2(nx,ny,nz); // Compute density and velocity on every site of first lattice, and store result // in external scalars; envelope cells are included, because they are needed // to compute the interaction potential in what follows. for (int iX=newX0-1; iX<=newX1+1; ++iX) { for (int iY=newY0-1; iY<=newY1+1; ++iY) { for (int iZ=newZ0-1; iZ<=newZ1+1; ++iZ) { Cell& cell = blockLattice.get(iX,iY,iZ); rhoField1.get(iX-offsetX, iY-offsetY, iZ-offsetZ) = cell.computeRho()*rho0[0]; } } } // Compute density and velocity on every site of second lattice, and store result // in external scalars; envelope cells are included, because they are needed // to compute the interaction potential in what follows. for (int iX=newX0-1; iX<=newX1+1; ++iX) { for (int iY=newY0-1; iY<=newY1+1; ++iY) { for (int iZ=newZ0-1; iZ<=newZ1+1; ++iZ) { Cell& cell = partnerLattice->get(iX,iY,iZ); rhoField2.get(iX-offsetX, iY-offsetY, iZ-offsetZ) = cell.computeRho()*rho0[1]; } } } for (int iX=newX0; iX<=newX1; ++iX) { for (int iY=newY0; iY<=newY1; ++iY) { for (int iZ=newZ0; iZ<=newZ1; ++iZ) { Cell& blockCell = blockLattice.get(iX,iY,iZ); Cell& partnerCell = partnerLattice->get(iX,iY,iZ); T* j = blockCell.template getFieldPointer(); lbHelpers::computeJ(blockCell,j); j = partnerCell.template getFieldPointer(); lbHelpers::computeJ(partnerCell,j); T blockOmega = *(blockCell.template getFieldPointer()); //blockLattice.getDynamics(iX, iY, iZ)->getOmega(); T partnerOmega = *(partnerCell.template getFieldPointer()); //partnerLattice.getDynamics(iX, iY, iZ)->getOmega(); // Computation of the common velocity, shared among the two populations T rhoTot = rhoField1.get(iX-offsetX, iY-offsetY, iZ-offsetZ)*blockOmega + rhoField2.get(iX-offsetX, iY-offsetY, iZ-offsetZ)*partnerOmega; T uTot[DESCRIPTOR::d]; T *blockU = blockCell.template getFieldPointer(); // contains precomputed value rho*u T *partnerU = partnerCell.template getFieldPointer(); // contains precomputed value rho*u for (int iD = 0; iD < DESCRIPTOR::d; ++iD) { uTot[iD] = (blockU[iD]*rho0[0]*blockOmega + partnerU[iD]*rho0[1]*partnerOmega) / rhoTot; } // Computation of the interaction potential T rhoBlockContribution[L::d] = {T(), T(), T()}; T rhoPartnerContribution[L::d] = {T(), T(), T()}; T psi2; T psi1; interactionPotential(&psi2, &rhoField2.get(iX-offsetX, iY-offsetY, iZ-offsetZ)); interactionPotential(&psi1, &rhoField1.get(iX-offsetX, iY-offsetY, iZ-offsetZ)); for (int iPop = 0; iPop < L::q; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); int nextZ = iZ + descriptors::c(iPop,2); T blockRho; T partnerRho; interactionPotential(&blockRho, &rhoField1.get(nextX-offsetX, nextY-offsetY, nextZ-offsetZ)); interactionPotential(&partnerRho, &rhoField2.get(nextX-offsetX, nextY-offsetY, nextZ-offsetZ)); for (int iD = 0; iD < L::d; ++iD) { rhoBlockContribution[iD] += psi2 * blockRho * descriptors::c(iPop,iD)* descriptors::t(iPop); rhoPartnerContribution[iD] += psi1 * partnerRho * descriptors::c(iPop,iD)* descriptors::t(iPop); } } // Computation and storage of the final velocity, consisting // of u and the momentum difference due to interaction // potential plus external force T *blockForce = blockCell.template getFieldPointer(); T *partnerForce = partnerCell.template getFieldPointer(); T *externalBlockForce = blockCell.template getFieldPointer(); T *externalPartnerForce = partnerCell.template getFieldPointer(); for (int iD = 0; iD < L::d; ++iD) { blockU[iD] = uTot[iD]; blockForce[iD] = externalBlockForce[iD] - G*rhoPartnerContribution[iD]/rhoField1.get(iX-offsetX, iY-offsetY, iZ-offsetZ); partnerU[iD] = uTot[iD]; partnerForce[iD] = externalPartnerForce[iD] - G*rhoBlockContribution[iD]/rhoField2.get(iX-offsetX, iY-offsetY, iZ-offsetZ); } } } } } } template void ShanChenDynOmegaForcedPostProcessor3D:: process(BlockLattice3D& blockLattice) { processSubDomain(blockLattice, x0, x1, y0, y1, z0, z1); } /// LatticeCouplingGenerator for NS coupling template ShanChenDynOmegaForcedGenerator3D::ShanChenDynOmegaForcedGenerator3D ( int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T G_, std::vector rho0_, AnalyticalF1D& iP_) : LatticeCouplingGenerator3D(x0_, x1_, y0_, y1_, z0_, z1_), G(G_), interactionPotential(iP_), rho0(rho0_) { } template ShanChenDynOmegaForcedGenerator3D::ShanChenDynOmegaForcedGenerator3D ( T G_, std::vector rho0_, AnalyticalF1D& iP_) : LatticeCouplingGenerator3D(0, 0, 0, 0, 0, 0), G(G_), interactionPotential(iP_), rho0(rho0_) { } template PostProcessor3D* ShanChenDynOmegaForcedGenerator3D::generate ( std::vector partners) const { return new ShanChenDynOmegaForcedPostProcessor3D( this->x0,this->x1,this->y0,this->y1,this->z0,this->z1, G, rho0, interactionPotential, partners); } template LatticeCouplingGenerator3D* ShanChenDynOmegaForcedGenerator3D::clone() const { return new ShanChenDynOmegaForcedGenerator3D(*this); } } // namespace olb #endif