/* This file is part of the OpenLB library * * Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani, Jonas Latt * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef SHAN_CHEN_FORCED_SINGLE_COMPONENT_POST_PROCESSOR_2D_HH #define SHAN_CHEN_FORCED_SINGLE_COMPONENT_POST_PROCESSOR_2D_HH #include "shanChenForcedSingleComponentPostProcessor2D.h" #include "interactionPotential.h" #include "core/blockLattice2D.h" #include "core/util.h" #include "core/finiteDifference2D.h" namespace olb { //////// ShanChenForcedSingleComponentPostProcessor2D /////////////////////////////////// template ShanChenForcedSingleComponentPostProcessor2D :: ShanChenForcedSingleComponentPostProcessor2D(int x0_, int x1_, int y0_, int y1_, T G_, std::vector rho0_, AnalyticalF1D& iP_, std::vector partners_) : x0(x0_), x1(x1_), y0(y0_), y1(y1_), G(G_), rho0(rho0_), interactionPotential(iP_), partners(partners_) { } template ShanChenForcedSingleComponentPostProcessor2D :: ShanChenForcedSingleComponentPostProcessor2D(T G_, std::vector rho0_, AnalyticalF1D& iP_, std::vector partners_) : x0(0), x1(0), y0(0), y1(0), G(G_), rho0(rho0_), interactionPotential(iP_), partners(partners_) { } template void ShanChenForcedSingleComponentPostProcessor2D:: processSubDomain( BlockLattice2D& blockLattice, int x0_, int x1_, int y0_, int y1_ ) { typedef DESCRIPTOR L; int newX0, newX1, newY0, newY1; if ( util::intersect ( x0, x1, y0, y1, x0_, x1_, y0_, y1_, newX0, newX1, newY0, newY1 ) ) { int nx = newX1-newX0+3; // include a one-cell boundary int ny = newY1-newY0+3; // include a one-cell boundary int offsetX = newX0-1; int offsetY = newY0-1; BlockData2D rhoField1(nx, ny); // Compute density and velocity on every site of first lattice, and store result // in external scalars; envelope cells are included, because they are needed // to compute the interaction potential in what follows. for (int iX=newX0-1; iX<=newX1+1; ++iX) { for (int iY=newY0-1; iY<=newY1+1; ++iY) { Cell& cell = blockLattice.get(iX,iY); rhoField1.get(iX-offsetX, iY-offsetY) = cell.computeRho()*rho0[0]; } } for (int iX=newX0; iX<=newX1; ++iX) { for (int iY=newY0; iY<=newY1; ++iY) { Cell& blockCell = blockLattice.get(iX,iY); T* j = blockCell.template getFieldPointer(); lbHelpers::computeJ(blockCell,j); T blockOmega = blockCell.getDynamics()->getOmega(); // Computation of the common velocity, shared among the two populations T rhoTot = rhoField1.get(iX-offsetX, iY-offsetY)*blockOmega; T uTot[DESCRIPTOR::d]; T *blockU = blockCell.template getFieldPointer(); // contains precomputed value rho*u for (int iD = 0; iD < DESCRIPTOR::d; ++iD) { uTot[iD] = (blockU[iD]*rho0[0]*blockOmega) / rhoTot; } // Computation of the interaction potential T rhoBlockContribution[L::d] = {T(), T()}; T psi; interactionPotential(&psi, &rhoField1.get(iX-offsetX, iY-offsetY)); for (int iPop = 0; iPop < L::q; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); T blockRho; interactionPotential(&blockRho, &rhoField1.get(nextX-offsetX, nextY-offsetY));//rho0[0]; for (int iD = 0; iD < L::d; ++iD) { rhoBlockContribution[iD] += psi * blockRho * descriptors::c(iPop,iD)* descriptors::t(iPop); } } // Computation and storage of the final velocity, consisting // of u and the momentum difference due to interaction // potential plus external force T *blockForce = blockCell.template getFieldPointer(); T *externalBlockForce = blockCell.template getFieldPointer(); for (int iD = 0; iD < L::d; ++iD) { blockU[iD] = uTot[iD]; blockForce[iD] = externalBlockForce[iD] - G*rhoBlockContribution[iD]/rhoField1.get(iX-offsetX, iY-offsetY); } } } } } template void ShanChenForcedSingleComponentPostProcessor2D:: process(BlockLattice2D& blockLattice) { processSubDomain(blockLattice, x0, x1, y0, y1); } /// LatticeCouplingGenerator for NS coupling template ShanChenForcedSingleComponentGenerator2D::ShanChenForcedSingleComponentGenerator2D ( int x0_, int x1_, int y0_, int y1_, T G_, std::vector rho0_, AnalyticalF1D& iP_ ) : LatticeCouplingGenerator2D(x0_, x1_, y0_, y1_), G(G_), rho0(rho0_), interactionPotential(iP_) { } template ShanChenForcedSingleComponentGenerator2D::ShanChenForcedSingleComponentGenerator2D ( T G_, std::vector rho0_, AnalyticalF1D& iP_ ) : LatticeCouplingGenerator2D(0, 0, 0, 0), G(G_), rho0(rho0_), interactionPotential(iP_) { } template PostProcessor2D* ShanChenForcedSingleComponentGenerator2D::generate ( std::vector partners) const { return new ShanChenForcedSingleComponentPostProcessor2D( this->x0,this->x1,this->y0,this->y1,G, rho0, interactionPotential, partners); } template LatticeCouplingGenerator2D* ShanChenForcedSingleComponentGenerator2D::clone() const { return new ShanChenForcedSingleComponentGenerator2D(*this); } } // namespace olb #endif