/* This file is part of the OpenLB library * * Copyright (C) 2012 Patrick Nathen, Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * MRT Dynamics with adjusted omega -- generic implementation. */ #ifndef SMAGORINSKY_MRT_DYNAMICS_HH #define SMAGORINSKY_MRT_DYNAMICS_HH #include #include #include "smagorinskyMRTdynamics.h" #include "mrtDynamics.h" #include "mrtHelpers.h" #include "core/cell.h" #include "core/util.h" #include "math.h" using namespace std; namespace olb { ////////////////////// Class SmagorinskyMRTdynamics ////////////////////////// /** \param vs2_ speed of sound * \param momenta_ a Momenta object to know how to compute velocity momenta * \param momenta_ a Momenta object to know how to compute velocity momenta */ template SmagorinskyMRTdynamics::SmagorinskyMRTdynamics ( T omega_, Momenta& momenta_, T smagoConst_, T dx_, T dt_ ) : MRTdynamics(omega_, momenta_/*, smagoConst_*/), smagoConst(smagoConst_), preFactor(computePreFactor(omega_,smagoConst_) ) { T rtSGS[DESCRIPTOR::q]; // relaxation times vector for SGS approach. for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) { rtSGS[iPop] = DESCRIPTOR::S[iPop]; } for (int iPop = 0; iPop < DESCRIPTOR::shearIndexes; ++iPop) { rtSGS[DESCRIPTOR::shearViscIndexes[iPop]] = omega; } for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) { for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) { invM_S_SGS[iPop][jPop] = T(); for (int kPop = 0; kPop < DESCRIPTOR::q; ++kPop) { if (kPop == jPop) { invM_S_SGS[iPop][jPop] += DESCRIPTOR::invM[iPop][kPop] * rtSGS[kPop]; } } } } } template void SmagorinskyMRTdynamics::collide( Cell& cell, LatticeStatistics& statistics ) { T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n]; this->_momenta.computeAllMomenta(cell, rho, u, pi); T newOmega = computeOmega(this->getOmega(), preFactor, rho, pi); for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) { for (int jPop = 0; jPop < DESCRIPTOR::shearIndexes; ++jPop) { invM_S_SGS[iPop][DESCRIPTOR::shearViscIndexes[jPop]] = DESCRIPTOR::invM[iPop][DESCRIPTOR::shearViscIndexes[jPop]] * newOmega; } } T uSqr = mrtHelpers::mrtSGSCollision(cell, rho, u, newOmega, invM_S_SGS); statistics.incrementStats(rho, uSqr); } template void SmagorinskyMRTdynamics::setOmega(T omega) { this->setOmega(omega); preFactor = computePreFactor(omega, smagoConst); } template T SmagorinskyMRTdynamics::getSmagorinskyOmega(Cell& cell ) { T rho, uTemp[DESCRIPTOR::d], pi[util::TensorVal::n]; this->_momenta.computeAllMomenta(cell, rho, uTemp, pi); T newOmega = computeOmega(this->getOmega(), preFactor, rho, pi); return newOmega; } template T SmagorinskyMRTdynamics::computePreFactor(T omega, T smagoConst) { return (T)smagoConst*smagoConst*descriptors::invCs2()*descriptors::invCs2()*2*sqrt(2); } template T SmagorinskyMRTdynamics::computeOmega(T omega0, T preFactor, T rho, T pi[util::TensorVal::n] ) { T PiNeqNormSqr = pi[0]*pi[0] + 2.0*pi[1]*pi[1] + pi[2]*pi[2]; if (util::TensorVal::n == 6) { PiNeqNormSqr += pi[2]*pi[2] + pi[3]*pi[3] + 2*pi[4]*pi[4] +pi[5]*pi[5]; } T PiNeqNorm = sqrt(PiNeqNormSqr); /// Molecular realaxation time T tau_mol = 1. /omega0; /// Turbulent realaxation time T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + preFactor/rho*PiNeqNorm) - tau_mol); /// Effective realaxation time tau_eff = tau_mol+tau_turb; T omega_new= 1./tau_eff; return omega_new; } template void SmagorinskyForcedMRTdynamics::collide( Cell& cell, LatticeStatistics& statistics ) { T rho, u[DESCRIPTOR::d], pi[util::TensorVal::n]; this->_momenta.computeAllMomenta(cell, rho, u, pi); T newOmega = computeOmega(this->getOmega(), this->preFactor, rho, pi); for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) { for (int jPop = 0; jPop < DESCRIPTOR::shearIndexes; ++jPop) { this->invM_S_SGS[iPop][DESCRIPTOR::shearViscIndexes[jPop]] = DESCRIPTOR::invM[iPop][DESCRIPTOR::shearViscIndexes[jPop]] * newOmega; } } T uSqr = mrtHelpers::mrtSGSCollision(cell, rho, u, newOmega, this->invM_S_SGS); mrtHelpers::addExternalForce(cell, rho, u, this->invM_S_SGS); statistics.incrementStats(rho, uSqr); } } #endif