/* This file is part of the OpenLB library
*
* Copyright (C) 2014-2016 Cyril Masquelier, Mathias J. Krause, Albert Mink
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef SMOOTH_INDICATOR_F_3D_HH
#define SMOOTH_INDICATOR_F_3D_HH
#include
#include
#include
#include "smoothIndicatorF3D.h"
#include "smoothIndicatorBaseF3D.h"
#include "smoothIndicatorCalcF3D.h"
#include "utilities/vectorHelpers.h"
#include "functors/analytical/interpolationF3D.h"
#include "functors/lattice/reductionF3D.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_PI2
#define M_PI2 1.57079632679489661923
#endif
namespace olb {
//Constructor: SmoothIndicatorCuboid3D
template
SmoothIndicatorCuboid3D::SmoothIndicatorCuboid3D(Vector center, S xLength, S yLength, S zLength, S epsilon, Vector theta, S density, Vector vel)
: _xLength(xLength),_yLength(yLength),_zLength(zLength)
{
this->_pos = center;
this->_circumRadius = .5*(sqrt(xLength*xLength+yLength*yLength+zLength*zLength))+0.5*epsilon;
this->_myMin = {
center[0] - this->getCircumRadius(),
center[1] - this->getCircumRadius(),
center[2] - this->getCircumRadius()
};
this->_myMax = {
center[0] + this->getCircumRadius(),
center[1] + this->getCircumRadius(),
center[2] + this->getCircumRadius()
};
this->_epsilon = epsilon;
this->_theta = {
theta[0] * (M_PI/180.),
theta[1] * (M_PI/180.),
theta[2] * (M_PI/180.)
};
T mass = xLength*yLength*zLength*density;
T xLength2 = xLength*xLength;
T yLength2 = yLength*yLength;
T zLength2 = zLength*zLength;
Vector mofi;
mofi[0] = 1./12.*mass*(yLength2+zLength2);
mofi[1] = 1./12.*mass*(xLength2+zLength2);
mofi[2] = 1./12.*mass*(yLength2+xLength2);
this->init(this->_theta, vel, mass, mofi);
}
template
bool SmoothIndicatorCuboid3D::operator()(T output[], const S input[])
{
//1.Calculate distance between point and center of unrotated indicator
T xDist = input[0] - this->getPos()[0];
T yDist = input[1] - this->getPos()[1];
T zDist = input[2] - this->getPos()[2];
//2.Calculate point projected to rotated indicator
// counter-clockwise rotation by _theta=-theta around center
T x = this->getPos()[0] + this->getRotationMatrix()[0]*xDist + this->getRotationMatrix()[3]*yDist + this->getRotationMatrix()[6]*zDist;
T y = this->getPos()[1] + this->getRotationMatrix()[1]*xDist + this->getRotationMatrix()[4]*yDist + this->getRotationMatrix()[7]*zDist;
T z = this->getPos()[2] + this->getRotationMatrix()[2]*xDist + this->getRotationMatrix()[5]*yDist + this->getRotationMatrix()[8]*zDist;
//3.Calculate distance between projected point and rotated indicator bounds
xDist = fabs(x-this->getPos()[0]) - 0.5*(_xLength-this->getEpsilon());
yDist = fabs(y-this->getPos()[1]) - 0.5*(_yLength-this->getEpsilon());
zDist = fabs(z-this->getPos()[2]) - 0.5*(_zLength-this->getEpsilon());
//4.Evaluate distance
if (xDist <= 0 && yDist <= 0 && zDist <= 0) {
output[0] = 1.;
return true;
}
if (xDist >= this->getEpsilon() || yDist >= this->getEpsilon() || zDist >= this->getEpsilon()) {
output[0] = 0.;
return false;
}
//Evaluate epsilon on edges and borders
T dist2 = 0.;
T epsilon2 = this->getEpsilon()*this->getEpsilon();
if (xDist < this->getEpsilon() && xDist > 0) {
dist2 += xDist*xDist;
}
if (yDist < this->getEpsilon() && yDist > 0) {
dist2 += yDist*yDist;
}
if (zDist < this->getEpsilon() && zDist > 0) {
dist2 += zDist*zDist;
}
if (dist2 > 0 && dist2 <= epsilon2) {
output[0] = T(cos(M_PI2*sqrt(dist2)/this->getEpsilon())*cos(M_PI2*sqrt(dist2)/this->getEpsilon()));
return true;
}
output[0] = 0.;
return false;
}
//Constructor: SmoothIndicatorSphere3D
template
SmoothIndicatorSphere3D::SmoothIndicatorSphere3D(Vector center,
S radius, S epsilon, S density, Vector vel)
: _radius(radius)
{
this->_pos = center;
this->_circumRadius = radius + 0.5*epsilon;
this->_myMin = {
center[0] - this->getCircumRadius(),
center[1] - this->getCircumRadius(),
center[2] - this->getCircumRadius()
};
this->_myMax = {
center[0] + this->getCircumRadius(),
center[1] + this->getCircumRadius(),
center[2] + this->getCircumRadius()
};
this->_epsilon = epsilon;
T mass = 4./3.*M_PI*std::pow(radius, 3.)*density;
T radius2 = radius * radius;
Vector mofi;
mofi[0] = 2./5.*mass*radius2;
mofi[1] = 2./5.*mass*radius2;
mofi[2] = 2./5.*mass*radius2;
Vector theta(0.,0.,0.);
this->init(theta, vel, mass, mofi);
}
template
bool SmoothIndicatorSphere3D::operator()(T output[], const S input[])
{
//1.Calculate distance between point and center of indicator
T distToCenter2 = (this->getPos()[0]-input[0])*(this->getPos()[0]-input[0]) +
(this->getPos()[1]-input[1])*(this->getPos()[1]-input[1]) +
(this->getPos()[2]-input[2])*(this->getPos()[2]-input[2]);
//3.Calculate distance between point and indicator bounds
T rDist = sqrt(distToCenter2) - (_radius-this->getEpsilon()*0.5);
//4. Evaluate distance
if (rDist <= 0) {
output[0] = 1.;
return true;
} else if (rDist > 0 && rDist < this->getEpsilon()) {
output[0] = T(cos(M_PI2*rDist/this->getEpsilon())*cos(M_PI2*rDist/this->getEpsilon()));
return true;
}
output[0] = 0.;
return false;
}
template
void SmoothIndicatorCylinder3D::initIndicatorCylinder3D(Vector normal, Vector theta, S density, Vector vel)
{
T normLength = sqrt( normal[0]*normal[0] + normal[1]*normal[1] + normal[2]*normal[2] );
T dx = normal[0]*(_length/normLength);
T dy = normal[1]*(_length/normLength);
T dz = normal[2]*(_length/normLength);
//Rotate according to normal orientation
theta[0] -= asin(dy/_length);
if (dz >= 0){
theta[1] += asin(dx/_length);
} else {
theta[1] += M_PI;
theta[1] -= asin(dx/_length);
}
this->_circumRadius = std::sqrt(_radius*_radius+(0.5*_length)*(0.5*_length))+0.5*this->getEpsilon();
this->_myMin = {
this->_pos[0] - this->getCircumRadius(),
this->_pos[1] - this->getCircumRadius(),
this->_pos[2] - this->getCircumRadius()
};
this->_myMax = {
this->_pos[0] + this->getCircumRadius(),
this->_pos[1] + this->getCircumRadius(),
this->_pos[2] + this->getCircumRadius()
};
T radius2 = _radius * _radius;
T mass = M_PI*radius2*_length*density;
Vector mofi;
mofi[0] = 0.5*mass*radius2;
mofi[1] = 1/12.*mass*(_length*_length+3.*radius2);
mofi[2] = 1/12.*mass*(_length*_length+3.*radius2);
this->init(theta, vel, mass, mofi);
}
//Constructor 1: SmoothIndicatorCylinder3D
template
SmoothIndicatorCylinder3D::SmoothIndicatorCylinder3D(Vector pointA, Vector pointB, S radius, S epsilon, Vector theta, S density, Vector vel)
: _radius(radius)
{
this->_epsilon = epsilon;
this->_pos[0] = 0.5*(pointA[0]+pointB[0]);
this->_pos[1] = 0.5*(pointA[1]+pointB[1]);
this->_pos[2] = 0.5*(pointA[2]+pointB[2]);
T dx = pointB[0]-pointA[0];
T dy = pointB[1]-pointA[1];
T dz = pointB[2]-pointA[2];
theta[0] *= M_PI/180.;
theta[1] *= M_PI/180.;
theta[2] *= M_PI/180.;
this->_theta = theta;
_length = sqrt( dx*dx + dy*dy + dz*dz );
Vector normal (dx/_length, dy/_length, dz/_length);
initIndicatorCylinder3D(normal, theta, density, vel);
}
//Constructor 2: SmoothIndicatorCylinder3D
template
SmoothIndicatorCylinder3D::SmoothIndicatorCylinder3D(Vector center, Vector normal, S radius, S length, S epsilon, Vector theta, S density, Vector vel)
: _radius(radius), _length(length)
{
this->_pos = center;
this->_epsilon = epsilon;
theta[0] *= M_PI/180.;
theta[1] *= M_PI/180.;
theta[2] *= M_PI/180.;
this->_theta = theta;
initIndicatorCylinder3D(normal, theta, density, vel);
}
template
bool SmoothIndicatorCylinder3D::operator()(T output[],const S input[])
{
//1.Calculate distance between point and center of unrotated (z aligned) indicator
T xDist = input[0] - this->getPos()[0];
T yDist = input[1] - this->getPos()[1];
T zDist = input[2] - this->getPos()[2];
//2.Calculate point projected to rotated indicator
// counter-clockwise rotation by _theta=-theta around center
T x= this->getPos()[0] + this->getRotationMatrix()[0]*xDist + this->getRotationMatrix()[3]*yDist + this->getRotationMatrix()[6]*zDist;
T y= this->getPos()[1] + this->getRotationMatrix()[1]*xDist + this->getRotationMatrix()[4]*yDist + this->getRotationMatrix()[7]*zDist;
T z= this->getPos()[2] + this->getRotationMatrix()[2]*xDist + this->getRotationMatrix()[5]*yDist + this->getRotationMatrix()[8]*zDist;
//3.Calculate distance between projected point and indicator bounds
T xyDistToCenter2 = (this->getPos()[0]-x)*(this->getPos()[0]-x)
+ (this->getPos()[1]-y)*(this->getPos()[1]-y);
T rDist = sqrt(xyDistToCenter2) - (_radius-this->getEpsilon()*0.5);
zDist = fabs(z -this-> getPos()[2]) - 0.5*(_length-this->getEpsilon());
//4.Evaluate distance
if ( zDist <= 0 && rDist <= 0) {
output[0] = 1.;
return true;
}
if (zDist >= this->getEpsilon() || rDist >= this->getEpsilon()) {
output[0] = 0.;
return false;
}
//Evaluate epsilon on edges and borders
T dist2 = 0.;
T epsilon2 = this->getEpsilon()*this->getEpsilon();
if (zDist < this->getEpsilon() && zDist > 0) {
dist2 += zDist*zDist;
}
if (rDist < this->getEpsilon() && rDist > 0) {
dist2 += rDist*rDist;
}
if (dist2 > 0 && dist2 < epsilon2) {
output[0] = T(cos(M_PI2*sqrt(dist2)/this->getEpsilon())*cos(M_PI2*sqrt(dist2)/this->getEpsilon()));
return true;
}
output[0] = 0.;
return false;
}
template
void SmoothIndicatorCone3D::initIndicatorCone3D(Vector normal, Vector theta, S density, Vector vel)
{
T normLength = sqrt( normal[0]*normal[0] + normal[1]*normal[1] + normal[2]*normal[2] );
T dx = normal[0]*(_length/normLength);
T dy = normal[1]*(_length/normLength);
T dz = normal[2]*(_length/normLength);
//Rotate according to normal orientation
theta[0] -= asin(dy/_length);
if (dz >= 0){
theta[1] += asin(dx/_length);
} else {
theta[1] += M_PI;
theta[1] -= asin(dx/_length);
}
T radiusA2 = _radiusA *_radiusA;
T radiusB2 = _radiusB *_radiusB;
T mass = (1/3.)*M_PI*(radiusA2+_radiusA*_radiusB+radiusB2)*_length*density;
Vector mofi;
//FOR NOW ONLY VALID FOR SIMPLE CONE. NOT FOR TRUNCATED ONE
mofi[0] = 3/10.*mass*radiusA2;
mofi[1] = 3/20.*mass*(4*_length*_length+radiusA2);
mofi[2] = 3/20.*mass*(4*_length*_length+radiusA2);
if (_radiusA >= _radiusB){
this->_circumRadius = std::sqrt(_radiusA*_radiusA+(0.5*_length)*(0.5*_length))+0.5*this->getEpsilon();
} else {
this->_circumRadius = std::sqrt(_radiusB*_radiusB+(0.5*_length)*(0.5*_length))+0.5*this->getEpsilon();
}
this->_myMin = {
this->_pos[0] - this->getCircumRadius(),
this->_pos[1] - this->getCircumRadius(),
this->_pos[2] - this->getCircumRadius()
};
this->_myMax = {
this->_pos[0] + this->getCircumRadius(),
this->_pos[1] + this->getCircumRadius(),
this->_pos[2] + this->getCircumRadius()
};
this->init(theta, vel, mass, mofi);
}
//Constructor 1: SmoothIndicatorCone3D
template
SmoothIndicatorCone3D::SmoothIndicatorCone3D(Vector pointA, Vector pointB, S radiusA, S radiusB, S epsilon, Vector theta, S density, Vector vel)
: _radiusA(radiusA), _radiusB(radiusB)
{
this->_epsilon = epsilon;
this->_pos[0] = 0.5*(pointA[0]+pointB[0]);
this->_pos[1] = 0.5*(pointA[1]+pointB[1]);
this->_pos[2] = 0.5*(pointA[2]+pointB[2]);
T dx = pointB[0]-pointA[0];
T dy = pointB[1]-pointA[1];
T dz = pointB[2]-pointA[2];
theta[0] *= M_PI/180.;
theta[1] *= M_PI/180.;
theta[2] *= M_PI/180.;
this->_theta = theta;
_length = sqrt( dx*dx + dy*dy + dz*dz );
Vector normal (dx/_length, dy/_length, dz/_length);
initIndicatorCone3D(normal, theta, density, vel);
}
//Constructor 2: SmoothIndicatorCone3D
template
SmoothIndicatorCone3D::SmoothIndicatorCone3D(Vector center, Vector normal, S radiusA, S radiusB, S length, S epsilon, Vector theta, S density, Vector vel)
: _radiusA(radiusA), _radiusB(radiusB), _length(length)
{
this->_pos = center;
this->_epsilon = epsilon;
theta[0] *= M_PI/180.;
theta[1] *= M_PI/180.;
theta[2] *= M_PI/180.;
this->_theta = theta;
initIndicatorCone3D(normal, theta, density, vel);
}
template
bool SmoothIndicatorCone3D::operator()(T output[],const S input[])
{
//1.Calculate distance between point and center of unrotated (z aligned) indicator
T xDist = input[0] - this->getPos()[0];
T yDist = input[1] - this->getPos()[1];
T zDist = input[2] - this->getPos()[2];
//2.Calculate point projected to rotated indicator
// counter-clockwise rotation by _theta=-theta around center
T x= this->getPos()[0] + this->getRotationMatrix()[0]*xDist + this->getRotationMatrix()[3]*yDist + this->getRotationMatrix()[6]*zDist;
T y= this->getPos()[1] + this->getRotationMatrix()[1]*xDist + this->getRotationMatrix()[4]*yDist + this->getRotationMatrix()[7]*zDist;
T z= this->getPos()[2] + this->getRotationMatrix()[2]*xDist + this->getRotationMatrix()[5]*yDist + this->getRotationMatrix()[8]*zDist;
//3.Calculate distance between projected point and indicator bounds
zDist = fabs(z -this-> getPos()[2]) - 0.5*(_length-this->getEpsilon());
T axDist = z -this-> getPos()[2];
T radiusAtZ = _radiusA - (axDist/_length+0.5)*(_radiusA-_radiusB);
T xyDistToCenter2 = (this->getPos()[0]-x)*(this->getPos()[0]-x)
+ (this->getPos()[1]-y)*(this->getPos()[1]-y);
T rDist = sqrt(xyDistToCenter2) - (radiusAtZ-this->getEpsilon()*0.5);
//4.Evaluate distance
if ( zDist <= 0 && rDist <= 0) {
output[0] = 1.;
return true;
}
if (zDist >= this->getEpsilon() || rDist >= this->getEpsilon()) {
output[0] = 0.;
return false;
}
//Evaluate epsilon on edges and borders
T dist2 = 0.;
T epsilon2 = this->getEpsilon()*this->getEpsilon();
if (zDist < this->getEpsilon() && zDist > 0) {
dist2 += zDist*zDist;
}
if (rDist < this->getEpsilon() && rDist > 0) {
dist2 += rDist*rDist;
}
if (dist2 > 0 && dist2 < epsilon2) {
output[0] = T(cos(M_PI2*sqrt(dist2)/this->getEpsilon())*cos(M_PI2*sqrt(dist2)/this-> getEpsilon()));
return true;
}
output[0] = 0.;
return false;
}
} // namespace olb
#endif