/* This file is part of the OpenLB library
*
* Copyright (C) 2012-2017 Lukas Baron, Tim Dornieden, Mathias J. Krause,
* Albert Mink, Fabian Klemens, Benjamin Förster, Marie-Luise Maier,
* Adrian Kummerlönder
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef INTERPOLATION_F_3D_HH
#define INTERPOLATION_F_3D_HH
#include
#include "interpolationF3D.h"
#include "dynamics/lbHelpers.h" // for computation of lattice rho and velocity
namespace olb {
/// trilinear interpolation for rectangular lattice with dimensions delta[i];
/// if the cuboid is a plane (e.g. nZ==1) this functor will convert to bilinear interpolation and to linear interpolation for a "line cuboid" (e.g. nY==nZ==1)
template
SpecialAnalyticalFfromBlockF3D::SpecialAnalyticalFfromBlockF3D(
BlockF3D& f, Cuboid3D& cuboid,
Vector delta, T scale)
: AnalyticalF3D(f.getTargetDim()), _f(f), _cuboid(cuboid), _delta(delta), _scale(scale)
{
this->getName() = "fromBlockF";
}
template
bool SpecialAnalyticalFfromBlockF3D::operator()(W output[],
const T physC[])
{
Vector origin = _cuboid.getOrigin();
// scale physC in all 3 dimensions
Vector physCv;
for (int i=0; i<3; i++) {
physCv[i] = origin[i] + (physC[i] - origin[i]) * ( _cuboid.getDeltaR() / _delta[i] );
}
int latticeR[3];
for (int i=0; i<3; i++) {
latticeR[i] = std::max((int)floor( (physCv[i] - origin[i])/
_cuboid.getDeltaR()), 0);
}
Vector physRiC;
Vector d, e;
W output_tmp[3];
Vector latticeRv;
for (int i=0; i<3; i++) {
latticeRv[i] = (T) latticeR[i];
}
physRiC = origin + latticeRv * _cuboid.getDeltaR();
T dr = 1. / _cuboid.getDeltaR();
// compute weights
d = (physCv - physRiC) * dr;
e = 1. - d;
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] = W();
output_tmp[iD] = W();
}
//0=1=2=
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0]*e[1]*e[2];
}
if (_cuboid.getNy() != 1) {
latticeR[1]++;
}
//0=1+2=
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0]*d[1]*e[2];
}
if (_cuboid.getNx() != 1) {
latticeR[0]++;
}
if (_cuboid.getNy() != 1) {
latticeR[1]--;
}
//0+1=2=
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0]*e[1]*e[2];
}
if (_cuboid.getNy() != 1) {
latticeR[1]++;
}
//0+1+2=
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0]*d[1]*e[2];
}
if (_cuboid.getNx() != 1) {
latticeR[0]--;
}
if (_cuboid.getNy() != 1) {
latticeR[1]--;
}
if (_cuboid.getNz() != 1) {
latticeR[2]++;
}
//0=1=2+
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0]*e[1]*d[2];
}
if (_cuboid.getNy() != 1) {
latticeR[1]++;
}
//0=1+2+
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0]*d[1]*d[2];
}
if (_cuboid.getNx() != 1) {
latticeR[0]++;
}
if (_cuboid.getNy() != 1) {
latticeR[1]--;
}
//0+1=2+
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0]*e[1]*d[2];
}
if (_cuboid.getNy() != 1) {
latticeR[1]++;
}
//0+1+2+
_f(output_tmp, latticeR);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0]*d[1]*d[2];
}
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] *= _scale;
}
return true;
}
template
AnalyticalFfromBlockF3D::AnalyticalFfromBlockF3D(
BlockF3D& f, Cuboid3D& cuboid, const int overlap)
: AnalyticalF3D(f.getTargetDim()),
_f(f), _cuboid(cuboid), _overlap(overlap)
{
this->getName() = "fromBlockF";
}
/// trilinear interpolation on cubic lattice
template
bool AnalyticalFfromBlockF3D::operator()(W output[], const T physC[])
{
int latticeC[3];
int latticeR[3];
_cuboid.getFloorLatticeR(latticeR, physC);
if ( latticeR[0] >= -_overlap && latticeR[0] + 1 < _cuboid.getNx() + _overlap &&
latticeR[1] >= -_overlap && latticeR[1] + 1 < _cuboid.getNy() + _overlap &&
latticeR[2] >= -_overlap && latticeR[2] + 1 < _cuboid.getNz() + _overlap ) {
const int& locX = latticeR[0];
const int& locY = latticeR[1];
const int& locZ = latticeR[2];
Vector physRiC;
Vector physCv(physC);
_cuboid.getPhysR(physRiC.data, locX, locY, locZ);
// compute weights
Vector d = (physCv - physRiC) * (1. / _cuboid.getDeltaR());
Vector e = 1. - d;
W output_tmp[_f.getTargetDim()];
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output_tmp[iD] = W();
}
latticeC[0] = locX;
latticeC[1] = locY;
latticeC[2] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * e[1] * e[2];
output_tmp[iD] = W();
}
latticeC[0] = locX;
latticeC[1] = locY + 1;
latticeC[2] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * d[1] * e[2];
output_tmp[iD] = W();
}
latticeC[0] = locX + 1;
latticeC[1] = locY;
latticeC[2] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * e[1] * e[2];
output_tmp[iD] = W();
}
latticeC[0] = locX + 1;
latticeC[1] = locY + 1;
latticeC[2] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * d[1] * e[2];
output_tmp[iD] = W();
}
latticeC[0] = locX;
latticeC[1] = locY;
latticeC[2] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * e[1] * d[2];
output_tmp[iD] = W();
}
latticeC[0] = locX;
latticeC[1] = locY + 1;
latticeC[2] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * d[1] * d[2];
output_tmp[iD] = W();
}
latticeC[0] = locX + 1;
latticeC[1] = locY;
latticeC[2] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * e[1] * d[2];
output_tmp[iD] = W();
}
latticeC[0] = locX + 1;
latticeC[1] = locY + 1;
latticeC[2] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * d[1] * d[2];
output_tmp[iD] = W();
}
return true;
} else {
return false;
}
}
template
AnalyticalFfromSuperF3D::AnalyticalFfromSuperF3D(SuperF3D& f,
bool communicateToAll, int overlap, bool communicateOverlap)
: AnalyticalF3D(f.getTargetDim()),
_communicateToAll(communicateToAll),
_communicateOverlap(communicateOverlap),
_f(f),
_cuboidGeometry(f.getSuperStructure().getCuboidGeometry()),
_overlap(overlap)
{
this->getName() = "fromSuperF";
if (overlap == -1) {
_overlap = _f.getSuperStructure().getOverlap();
}
LoadBalancer& load = _f.getSuperStructure().getLoadBalancer();
if ( _f.getBlockFSize() == load.size() ) {
for (int iC = 0; iC < load.size(); ++iC) {
this->_blockF.emplace_back(
new AnalyticalFfromBlockF3D(_f.getBlockF(iC),
_cuboidGeometry.get(load.glob(iC)),
_overlap)
);
}
}
}
template
bool AnalyticalFfromSuperF3D::operator()(W output[], const T physC[])
{
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] = W();
}
int latticeR[4];
if (!_cuboidGeometry.getLatticeR(latticeR, physC)) {
return false;
}
if (_communicateOverlap) {
_f.getSuperStructure().communicate();
}
int dataSize = 0;
int dataFound = 0;
int latticeC[4] = {};
LoadBalancer& load = _f.getSuperStructure().getLoadBalancer();
for (int iC = 0; iC < load.size(); ++iC) {
latticeC[0] = load.glob(iC);
Cuboid3D& cuboid = _cuboidGeometry.get(latticeC[0]);
cuboid.getFloorLatticeR(latticeR, physC);
// latticeR within cuboid extended by overlap
if ( latticeR[0] >= -_overlap && latticeR[0] + 1 < cuboid.getNx() + _overlap &&
latticeR[1] >= -_overlap && latticeR[1] + 1 < cuboid.getNy() + _overlap &&
latticeR[2] >= -_overlap && latticeR[2] + 1 < cuboid.getNz() + _overlap ) {
if (_blockF.empty()) {
const int& locX = latticeR[0];
const int& locY = latticeR[1];
const int& locZ = latticeR[2];
Vector physRiC;
Vector physCv(physC);
cuboid.getPhysR(physRiC.data, locX, locY, locZ);
// compute weights
Vector d = (physCv - physRiC) * (1. / cuboid.getDeltaR());
Vector e = 1. - d;
W output_tmp[_f.getTargetDim()];
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output_tmp[iD] = W();
}
latticeC[1] = locX;
latticeC[2] = locY;
latticeC[3] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * e[1] * e[2];
output_tmp[iD] = W();
}
latticeC[1] = locX;
latticeC[2] = locY + 1;
latticeC[3] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * d[1] * e[2];
output_tmp[iD] = W();
}
latticeC[1] = locX + 1;
latticeC[2] = locY;
latticeC[3] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * e[1] * e[2];
output_tmp[iD] = W();
}
latticeC[1] = locX + 1;
latticeC[2] = locY + 1;
latticeC[3] = locZ;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * d[1] * e[2];
output_tmp[iD] = W();
}
latticeC[1] = locX;
latticeC[2] = locY;
latticeC[3] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * e[1] * d[2];
output_tmp[iD] = W();
}
latticeC[1] = locX;
latticeC[2] = locY + 1;
latticeC[3] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * e[0] * d[1] * d[2];
output_tmp[iD] = W();
}
latticeC[1] = locX + 1;
latticeC[2] = locY;
latticeC[3] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * e[1] * d[2];
output_tmp[iD] = W();
}
latticeC[1] = locX + 1;
latticeC[2] = locY + 1;
latticeC[3] = locZ + 1;
_f(output_tmp,latticeC);
for (int iD = 0; iD < _f.getTargetDim(); ++iD) {
output[iD] += output_tmp[iD] * d[0] * d[1] * d[2];
output_tmp[iD] = W();
}
} else {
_blockF[iC]->operator()(output, physC);
}
dataSize += _f.getTargetDim();
++dataFound;
}
}
if (_communicateToAll) {
#ifdef PARALLEL_MODE_MPI
singleton::mpi().reduceAndBcast(dataFound, MPI_SUM);
singleton::mpi().reduceAndBcast(dataSize, MPI_SUM);
#endif
dataSize /= dataFound;
#ifdef PARALLEL_MODE_MPI
for (int iD = 0; iD < dataSize; ++iD) {
singleton::mpi().reduceAndBcast(output[iD], MPI_SUM);
}
#endif
for (int iD = 0; iD < dataSize; ++iD) {
output[iD]/=dataFound;
}
} else {
if (dataFound!=0) {
dataSize /= dataFound;
for (int iD = 0; iD < dataSize; ++iD) {
output[iD]/=dataFound;
}
}
}
if (dataFound>0) {
return true;
}
return false;
}
template
int AnalyticalFfromSuperF3D::getBlockFSize() const
{
OLB_ASSERT(_blockF.size() < INT32_MAX,
"it is safe to cast std::size_t to int");
return _blockF.size();
}
template
AnalyticalFfromBlockF3D& AnalyticalFfromSuperF3D::getBlockF(int iCloc)
{
OLB_ASSERT(iCloc < int(_blockF.size()) && iCloc >= 0,
"block functor index within bounds");
return *(_blockF[iCloc]);
}
} // end namespace olb
#endif