/* This file is part of the OpenLB library
*
* Copyright (C) 2018 Adrian Kummerlaender
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef SUPER_PLANE_INTEGRAL_F_2D_HH
#define SUPER_PLANE_INTEGRAL_F_2D_HH
#include "superPlaneIntegralF2D.h"
#include "utilities/vectorHelpers.h"
#include "utilities/functorPtr.hh"
#include "functors/lattice/indicator/indicator2D.hh"
namespace olb {
template
bool SuperPlaneIntegralF2D::isToBeIntegrated(const Vector& physR, int iC)
{
Vector latticeR;
//get nearest lattice point
if ( _geometry.getCuboidGeometry().getFloorLatticeR(physR, latticeR) ) {
const int& iX = latticeR[1];
const int& iY = latticeR[2];
// interpolation is possible iff all neighbours are within the indicated subset
return _integrationIndicatorF->operator()( iC, iX, iY )
&& _integrationIndicatorF->operator()(iC, iX, iY+1)
&& _integrationIndicatorF->operator()(iC, iX+1, iY )
&& _integrationIndicatorF->operator()(iC, iX+1, iY+1);
}
else {
return false;
}
}
template
SuperPlaneIntegralF2D::SuperPlaneIntegralF2D(
FunctorPtr>&& f,
SuperGeometry2D& geometry,
const HyperplaneLattice2D& hyperplaneLattice,
FunctorPtr>&& integrationIndicator,
FunctorPtr>&& subplaneIndicator,
BlockDataReductionMode mode)
: SuperF2D(f->getSuperStructure(), 2 + f->getTargetDim()),
_geometry(geometry),
_f(std::move(f)),
_integrationIndicatorF(std::move(integrationIndicator)),
_subplaneIndicatorF(std::move(subplaneIndicator)),
_reductionF(*_f,
hyperplaneLattice,
BlockDataSyncMode::None,
mode),
_origin(hyperplaneLattice.getHyperplane().origin),
_u(hyperplaneLattice.getVectorU()),
_normal(hyperplaneLattice.getHyperplane().normal)
{
this->getName() = "SuperPlaneIntegralF2D";
_normal.normalize();
_u.normalize();
for ( const std::tuple& pos : _reductionF.getRankLocalSubplane() ) {
const int& i = std::get<0>(pos);
const int& iC = std::get<1>(pos);
const Vector physR = _reductionF.getPhysR(i);
if (isToBeIntegrated(physR, iC)) {
// check if interpolated hyperplane is to be restricted further
// e.g. using IndicatorCircle2D
if ( _subplaneIndicatorF ) {
// determine physical coordinates relative to original hyperplane origin
// [!] different from _reductionF._origin in the general case.
const Vector physRelativeToOrigin = physR - _origin;
const T physOnHyperplane = physRelativeToOrigin * _u;
if ( _subplaneIndicatorF->operator()(&physOnHyperplane) ) {
_rankLocalSubplane.emplace_back(i);
}
}
else {
// plane is not restricted further
_rankLocalSubplane.emplace_back(i);
}
}
}
}
template
SuperPlaneIntegralF2D::SuperPlaneIntegralF2D(
FunctorPtr>&& f,
SuperGeometry2D& geometry,
const Hyperplane2D& hyperplane,
FunctorPtr>&& integrationIndicator,
FunctorPtr>&& subplaneIndicator,
BlockDataReductionMode mode)
: SuperPlaneIntegralF2D(
std::forward(f),
geometry,
HyperplaneLattice2D(geometry.getCuboidGeometry(), hyperplane),
std::forward(integrationIndicator),
std::forward(subplaneIndicator),
mode)
{ }
template
SuperPlaneIntegralF2D::SuperPlaneIntegralF2D(
FunctorPtr>&& f,
SuperGeometry2D& geometry,
const Hyperplane2D& hyperplane,
FunctorPtr>&& integrationIndicator,
BlockDataReductionMode mode)
: SuperPlaneIntegralF2D(
std::forward(f),
geometry,
hyperplane,
std::forward(integrationIndicator),
nullptr,
mode)
{ }
template
SuperPlaneIntegralF2D::SuperPlaneIntegralF2D(
FunctorPtr>&& f,
SuperGeometry2D& geometry,
const Vector& origin, const Vector& u,
std::vector materials,
BlockDataReductionMode mode)
: SuperPlaneIntegralF2D(
std::forward(f),
geometry,
Hyperplane2D().originAt(origin).parallelTo(u),
geometry.getMaterialIndicator(std::forward(materials)),
mode)
{ }
template
SuperPlaneIntegralF2D::SuperPlaneIntegralF2D(
FunctorPtr>&& f,
SuperGeometry2D& geometry,
const Vector& origin, const Vector& u,
BlockDataReductionMode mode)
: SuperPlaneIntegralF2D(
std::forward(f),
geometry,
origin, u,
std::vector(1,1),
mode)
{ }
template
bool SuperPlaneIntegralF2D::operator()(T output[], const int input[])
{
this->getSuperStructure().communicate();
_reductionF.update();
const int flowDim = _reductionF.getTargetDim();
std::vector flow(flowDim,0.);
for ( int pos : _rankLocalSubplane ) {
T outputTmp[flowDim];
_reductionF(outputTmp, pos);
for ( int j = 0; j < flowDim; j++ ) {
flow[j] += outputTmp[j];
}
}
int vox = _rankLocalSubplane.size();
#ifdef PARALLEL_MODE_MPI
for ( int j = 0; j < flowDim; j++ ) {
singleton::mpi().reduceAndBcast(flow[j], MPI_SUM);
}
singleton::mpi().reduceAndBcast(vox, MPI_SUM);
#endif
const T h = _reductionF.getPhysSpacing();
switch ( flowDim ) {
case 1: {
output[0] = flow[0] * h;
break;
}
case 2: {
output[0] = (h * Vector(flow)) * _normal;
break;
}
}
// area
output[1] = vox * h;
// write flow to output[2..]
std::copy_n(flow.cbegin(), flowDim, &output[2]);
return true;
}
}
#endif