/* This file is part of the OpenLB library
*
* Copyright (C) 2012-2017 Lukas Baron, Tim Dornieden, Mathias J. Krause,
* Albert Mink, Benjamin Förster, Adrian Kummerlaender
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef REDUCTION_F_3D_H
#define REDUCTION_F_3D_H
#include "blockBaseF3D.h"
#include "superBaseF3D.h"
#include "geometry/cuboidGeometry3D.h"
#include "geometry/blockGeometry3D.h"
#include "geometry/superGeometry3D.h"
#include "functors/analytical/analyticalF.h"
namespace olb {
/// Functor used to convert analytical functions to lattice functions
/**
* Input functions are interpreted as SI->SI units, the resulting lattice
* function will map lattice->lattice units
*/
template
class SuperLatticeFfromAnalyticalF3D final : public SuperLatticeF3D {
protected:
FunctorPtr> _f;
public:
/**
* \param f Analytical functor to be converted into a lattice functor
* \param sLattice DESCRIPTOR reference required for conversion and block functor construction
**/
SuperLatticeFfromAnalyticalF3D(FunctorPtr>&& f,
SuperLattice3D& sLattice);
bool operator() (T output[], const int input[]) override;
};
/// Block level functor for conversion of analytical to lattice functors.
/**
* Instances are contained in SuperLatticeFfromAnalyticalF3D::_blockF.
**/
template
class BlockLatticeFfromAnalyticalF3D final : public BlockLatticeF3D {
protected:
AnalyticalF3D& _f;
Cuboid3D& _cuboid;
public:
/**
* \param f Analytical functor to be converted into a lattice functor
* \param lattice Block lattice structure required for BlockLatticeF3D construction
* \param cuboid Cuboid reference required for input parameter conversion
**/
BlockLatticeFfromAnalyticalF3D(AnalyticalF3D& f,
BlockLatticeStructure3D& lattice,
Cuboid3D& cuboid);
bool operator() (T output[], const int input[]) override;
};
//////////// not yet working // symbolically ///////////////////
////////////////////////////////////////////////
template
class SmoothBlockIndicator3D final : public BlockDataF3D {
protected:
IndicatorF3D& _f;
T _h;
T _eps;
/*
* int _wa (weight accuracy): to change the size of the weights array, 3 should be enough, 7 & 5 is more accurate.
* only use these sizes: 3, 5, 7, 9, ... (still 3 or 5 is recommended)
* more testing has to be done
* the size of the weights matrix affects the particle size, therefore it has to be known earlier, to calculate the BlockData size
*
* Note: wa influences the boundary size. Maybe unify eps-boundary size somehow.
*/
int _wa;
public:
SmoothBlockIndicator3D(IndicatorF3D& f, T h, T eps, int wa = 3);
//bool operator() (T output[], const int input[]);
};
// TODO: comment code
template
class BlockLatticeInterpPhysVelocity3Degree3D final : public
BlockLatticeF3D {
protected:
UnitConverter& _conv;
Cuboid3D* _cuboid;
int _overlap;
int _range;
public:
BlockLatticeInterpPhysVelocity3Degree3D(
BlockLatticeStructure3D& blockLattice,
UnitConverter& conv, Cuboid3D* c, int overlap, int range);
BlockLatticeInterpPhysVelocity3Degree3D(
const BlockLatticeInterpPhysVelocity3Degree3D& rhs);
bool operator() (T output[], const int input[]) override
{
return false;
}
void operator() (T output[], const T input[]);
};
// TODO: comment code
template
class SuperLatticeInterpPhysVelocity3Degree3D final : public
SuperLatticeF3D {
private:
std::vector* > _bLattices;
public:
SuperLatticeInterpPhysVelocity3Degree3D(
SuperLattice3D& sLattice, UnitConverter& conv,
int range=1);
bool operator() (T output[], const int input[]) override
{
return 0;
}
void operator()(T output[], const T input[], const int iC);
};
// TODO: comment code
template
class BlockLatticeInterpDensity3Degree3D final : public
BlockLatticeF3D {
protected:
BlockGeometryStructure3D& _blockGeometry;
UnitConverter& _conv;
Cuboid3D* _cuboid;
int _overlap;
int _range; // degree of interpolation can be changed (2,3,4,...)
public:
BlockLatticeInterpDensity3Degree3D(
BlockLatticeStructure3D& blockLattice,
BlockGeometryStructure3D& blockGeometry,
UnitConverter& conv, Cuboid3D* c, int overlap, int range);
BlockLatticeInterpDensity3Degree3D(
const BlockLatticeInterpDensity3Degree3D& rhs);
bool operator() (T output[], const int input[]) override
{
return false;
}
void operator() (T output[DESCRIPTOR::q], const T input[3]);
};
// TODO: comment code
template
class SuperLatticeInterpDensity3Degree3D final : public
SuperLatticeF3D {
private:
std::vector* > _bLattices;
public:
SuperLatticeInterpDensity3Degree3D(SuperLattice3D& sLattice,
SuperGeometry3D& sGeometry,
UnitConverter& conv, int range=1);
~SuperLatticeInterpDensity3Degree3D() override;
// range equals degree of interpolation and can be changed (2,3,4,...)
bool operator() (T output[], const int input[]) override
{
return 0;
}
void operator()(T output[], const T input[], const int iC);
};
// TODO: comment code
template
class BlockLatticeSmoothDiracDelta3D final : public
BlockLatticeF3D {
protected:
UnitConverter& _conv;
Cuboid3D* _cuboid;
public:
BlockLatticeSmoothDiracDelta3D(BlockLattice3D& blockLattice,
UnitConverter& conv, Cuboid3D* c);
BlockLatticeSmoothDiracDelta3D(
const BlockLatticeSmoothDiracDelta3D& rhs);
bool operator() (T output[], const int input[]) override
{
return false;
}
void operator() (T delta[4][4][4], const T physPosP[3]);
};
// TODO: comment code
template
class SuperLatticeSmoothDiracDelta3D final : public
SuperLatticeF3D {
private:
std::vector* > _bLattices;
public:
SuperLatticeSmoothDiracDelta3D(SuperLattice3D& sLattice,
UnitConverter& conv,
SuperGeometry3D& superGeometry);
~SuperLatticeSmoothDiracDelta3D() override;
bool operator()(T output[], const int input[]) override
{
return false;
};
void operator()(T delta[4][4][4], const T physPos[3], const int iC);
};
} // end namespace olb
#endif