/* This file is part of the OpenLB library
*
* Copyright (C) 2018 Mathias J. Krause, Benedict Hasenauer
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef SUPER_LATTICE_TIME_AVERAGED_F3_D_HH
#define SUPER_LATTICE_TIME_AVERAGED_F3_D_HH
#include // for generic i/o
#include // for lpnorm
#include
#include "superLatticeTimeAveraged3D.h"
namespace olb {
template
SuperLatticeTimeAveragedF3D:: SuperLatticeTimeAveragedF3D( SuperF3D& sFunctor)
: SuperF3D(sFunctor.getSuperStructure(),sFunctor.getTargetDim()*2), _ensembles(0), _sFunctor(sFunctor), _sData(_sFunctor.getSuperStructure().getCuboidGeometry(),_sFunctor.getSuperStructure().getLoadBalancer(),_sFunctor.getSuperStructure().getOverlap(),_sFunctor.getTargetDim()), _sDataP2(_sData)
{
this->getName() = "Time Averaged " + _sFunctor.getName();
};
template
bool SuperLatticeTimeAveragedF3D::operator() (T output[], const int input[])
{
T iCloc = _sData.getLoadBalancer().loc(input[0]);
for ( int iDim = 0; iDim < _sData.getDataSize(); iDim++) {
output[iDim] = _sData.get(iCloc,input[1],input[2],input[3],iDim) / _ensembles;
}
for (int iDim = _sData.getDataSize(); iDim < _sData.getDataSize()*2; iDim++)
if (_sDataP2.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles - _sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())*_sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles/_ensembles<0) {
output[iDim]=0;
}
else {
output[iDim] = sqrt(_sDataP2.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles - _sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())*_sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles/_ensembles);
}
return true;
};
template
int SuperLatticeTimeAveragedF3D::getEnsembles()
{
return _ensembles;
};
template
void SuperLatticeTimeAveragedF3D::addEnsemble()
{
int i[4];
int iX,iY,iZ;
for (int iCloc=0; iCloc < _sData.getLoadBalancer().size(); ++iCloc) {
i[0] = _sData.getLoadBalancer().glob(iCloc);
for (iX=0; iX < _sData.get(iCloc).getNx(); iX++) {
for (iY=0; iY < _sData.get(iCloc).getNy(); iY++) {
for (iZ=0; iZ < _sData.get(iCloc).getNz(); iZ++) {
i[1] = iX - _sData.getOverlap();
i[2] = iY - _sData.getOverlap();
i[3] = iZ - _sData.getOverlap();
BaseType tmp[_sFunctor.getTargetDim()];
_sFunctor(tmp, i);
for (int iDim=0; iDim<_sFunctor.getTargetDim(); iDim++) {
_sData.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmp[iDim]) ;
_sDataP2.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmp[iDim]) *(BaseType)(tmp[iDim]) ;
}
}
}
}
}
_ensembles++;
};
template
int SuperLatticeTimeAveragedF3D::getBlockFSize() const
{
return 0;
};
template
SuperLatticeTimeAveragedCrossCorrelationF3D::SuperLatticeTimeAveragedCrossCorrelationF3D(SuperF3D& sFunctorM,SuperF3D& sFunctorN)
: SuperF3D(sFunctorM.getSuperStructure(),sFunctorM.getTargetDim()*sFunctorN.getTargetDim()),_sFunctorM(sFunctorM),_sFunctorN(sFunctorN), _ensembles(0), _sDataM(_sFunctorM.getSuperStructure().getCuboidGeometry(),_sFunctorM.getSuperStructure().getLoadBalancer(),_sFunctorM.getSuperStructure().getOverlap(),_sFunctorM.getTargetDim()),_sDataN(_sFunctorN.getSuperStructure().getCuboidGeometry(),_sFunctorN.getSuperStructure().getLoadBalancer(),_sFunctorN.getSuperStructure().getOverlap(),_sFunctorN.getTargetDim()),_sDataMN(_sFunctorM.getSuperStructure().getCuboidGeometry(),_sFunctorM.getSuperStructure().getLoadBalancer(),_sFunctorM.getSuperStructure().getOverlap(),_sFunctorM.getTargetDim()*_sFunctorN.getTargetDim())
{
this->getName() = "Time Averaged Corss Correlation " + _sFunctorM.getName()+"-"+_sFunctorN.getName();
};
template
void SuperLatticeTimeAveragedCrossCorrelationF3D::addEnsemble()
{
int i[4];
int iX,iY,iZ;
int iDimMN;
for (int iCloc=0; iCloc < _sDataMN.getLoadBalancer().size(); ++iCloc) {
i[0] = _sDataMN.getLoadBalancer().glob(iCloc);
for (iX=0; iX < _sDataMN.get(iCloc).getNx(); iX++) {
for (iY=0; iY < _sDataMN.get(iCloc).getNy(); iY++) {
for (iZ=0; iZ < _sDataMN.get(iCloc).getNz(); iZ++) {
i[1] = iX - _sDataMN.getOverlap();
i[2] = iY - _sDataMN.getOverlap();
i[3] = iZ - _sDataMN.getOverlap();
BaseType tmpN[_sFunctorN.getTargetDim()];
BaseType tmpM[_sFunctorM.getTargetDim()];
_sFunctorN(tmpN, i);
_sFunctorM(tmpM, i);
iDimMN=0;
for (int iDimM=0; iDimM<_sFunctorM.getTargetDim(); iDimM++) {
for (int iDimN=0; iDimN<_sFunctorN.getTargetDim(); iDimN++) {
_sDataMN.get(iCloc).get(iX, iY, iZ, iDimMN) += (BaseType)(tmpM[iDimM])*(BaseType)(tmpN[iDimN]) ;
iDimMN++;
}
}
for (int iDim=0; iDim<_sFunctorN.getTargetDim(); iDim++) {
_sDataN.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmpN[iDim]) ;
}
for (int iDim=0; iDim<_sFunctorM.getTargetDim(); iDim++) {
_sDataM.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmpM[iDim]) ;
}
}
}
}
}
_ensembles++;
};
template
bool SuperLatticeTimeAveragedCrossCorrelationF3D::operator() (T output[], const int input[])
{
int iDim =0;
T iCloc = _sDataMN.getLoadBalancer().loc(input[0]);
for (int iDimM=0; iDimM<_sFunctorM.getTargetDim(); iDimM++) {
for (int iDimN=0; iDimN<_sFunctorN.getTargetDim(); iDimN++) {
output[iDim] = _sDataMN.get(iCloc,input[1],input[2],input[3],iDim)-_sDataM.get(iCloc,input[1],input[2],input[3],iDimM) *_sDataN.get(iCloc,input[1],input[2],input[3],iDimN)/_ensembles;
iDim++;
}
}
return true;
};
template
SuperLatticeTimeAveraged3DL2Norm::SuperLatticeTimeAveraged3DL2Norm(SuperF3D& sFunctorM,SuperF3D& sFunctorN,SuperGeometry3D& sGeometry,int material)
: SuperF3D(sFunctorM.getSuperStructure(),sFunctorM.getTargetDim()), _sFunctorM(sFunctorM), _sFunctorN(sFunctorN), _sGeometry(sGeometry),_material(material)
{
this->getName() = "SuperLatticeTimeAveraged3DL2Norm";
};
template
bool SuperLatticeTimeAveraged3DL2Norm::operator() (T output[], const int input[])
{
output[0]=0;
CuboidGeometry3D& geometry = _sFunctorM.getSuperStructure().getCuboidGeometry();
int inputTmp[3];
T tmpM[_sFunctorM.getTargetDim()];
T tmpN[_sFunctorN.getTargetDim()];
for (int iC = 0; iC < _sFunctorM.getSuperStructure().getLoadBalancer().size(); ++iC) {
Cuboid3D& cuboid = geometry.get(_sFunctorM.getSuperStructure().getLoadBalancer().glob(iC));
const int nX = cuboid.getNx();
const int nY = cuboid.getNy();
inputTmp[0] = _sFunctorM.getSuperStructure().getLoadBalancer().glob(iC);
for (inputTmp[1] = 0; inputTmp[1] < nX; ++inputTmp[1]) {
for (inputTmp[2] = 0; inputTmp[2] < nY; ++inputTmp[2]) {
_sFunctorM(tmpM, inputTmp);
_sFunctorN(tmpN, inputTmp);
for (int iDim = 0; iDim < _sFunctorM.getTargetDim()/2; ++iDim) {
output[0] += (tmpM[iDim]-tmpN[iDim])*(tmpM[iDim]-tmpN[iDim]);
}
}
}
}
#ifdef PARALLEL_MODE_MPI
singleton::mpi().reduceAndBcast(output[0],MPI_SUM);
#endif
Cuboid3D& cuboid = geometry.get(_sFunctorM.getSuperStructure().getLoadBalancer().glob(0));
const T weight = cuboid.getDeltaR();
output[0]=sqrt(output[0])*weight;
return true;
};
}
#endif