/* This file is part of the OpenLB library * * Copyright (C) 2011, 2014 Mathias J. Krause, Simon Zimny * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * Representation of a statistic for a 2D geometry -- generic implementation. */ #ifndef BLOCK_GEOMETRY_STATISTICS_2D_HH #define BLOCK_GEOMETRY_STATISTICS_2D_HH #include #include #include #include #include #include "geometry/blockGeometry2D.h" #include "geometry/blockGeometryStatistics2D.h" namespace olb { template BlockGeometryStatistics2D::BlockGeometryStatistics2D( BlockGeometryStructure2D* blockGeometry) : _blockGeometry(blockGeometry), clout(std::cout,"BlockGeometryStatistics2D") { _statisticsUpdateNeeded=true; } template bool& BlockGeometryStatistics2D::getStatisticsStatus() { return _statisticsUpdateNeeded; } template bool const & BlockGeometryStatistics2D::getStatisticsStatus() const { return _statisticsUpdateNeeded; } template void BlockGeometryStatistics2D::update(bool verbose) { if (getStatisticsStatus() ) { _material2n.clear(); _nX = _blockGeometry->getNx(); _nY = _blockGeometry->getNy(); _h = _blockGeometry->getDeltaR(); for (int iX = 0; iX < _nX; ++iX) { for (int iY = 0; iY < _nY; ++iY) { takeStatistics(iX, iY); } } _nMaterials=int(); std::map::iterator iter; for (iter = _material2n.begin(); iter != _material2n.end(); iter++) { _nMaterials++; } if (verbose) { clout << "updated" << std::endl; } getStatisticsStatus()=false; } } template int BlockGeometryStatistics2D::getNmaterials() { update(); return _nMaterials; } template int BlockGeometryStatistics2D::getNvoxel(int material) { update(); return _material2n[material]; } template std::map BlockGeometryStatistics2D::getMaterial2n() { update(); return _material2n; } template int BlockGeometryStatistics2D::getNvoxel() { update(); int total = 0; std::map::iterator iter; for (iter = _material2n.begin(); iter != _material2n.end(); iter++) { if (iter->first!=0) { total+=iter->second; } } return total; } template std::vector BlockGeometryStatistics2D::getMinLatticeR(int material) { update(); return _material2min[material]; } template std::vector BlockGeometryStatistics2D::getMaxLatticeR(int material) { update(); return _material2max[material]; } template std::vector BlockGeometryStatistics2D::getMinPhysR(int material) { std::vector tmp(2,T()); _blockGeometry->getPhysR(&(tmp[0]), &(getMinLatticeR(material)[0])); return tmp; } template std::vector BlockGeometryStatistics2D::getMaxPhysR(int material) { std::vector tmp(2,T()); _blockGeometry->getPhysR(&(tmp[0]), &(getMaxLatticeR(material)[0])); return tmp; } template std::vector BlockGeometryStatistics2D::getLatticeExtend(int material) { update(); std::vector extend; for (int iDim = 0; iDim < 2; iDim++) { extend.push_back(_material2max[material][iDim] - _material2min[material][iDim]); } return extend; } template std::vector BlockGeometryStatistics2D::getPhysExtend(int material) { update(); std::vector extend; for (int iDim = 0; iDim < 2; iDim++) { extend.push_back(getMaxPhysR(material)[iDim] - getMinPhysR(material)[iDim]); } return extend; } template std::vector BlockGeometryStatistics2D::getPhysRadius(int material) { update(); std::vector radius; for (int iDim=0; iDim<2; iDim++) { radius.push_back((getMaxPhysR(material)[iDim] - getMinPhysR(material)[iDim])/2.); } return radius; } template std::vector BlockGeometryStatistics2D::getCenterPhysR(int material) { update(); std::vector center; for (int iDim=0; iDim<2; iDim++) { center.push_back(getMinPhysR(material)[iDim] + getPhysRadius(material)[iDim]); } return center; } template std::vector BlockGeometryStatistics2D::getType(int iX, int iY) { std::vector discreteNormal(3, 0); if (_blockGeometry->getMaterial(iX, iY) != 1 && _blockGeometry->getMaterial(iX, iY) != 0) { ///boundary0N and boundary 0P if (_blockGeometry->getMaterial(iX, iY + 1) != 1 && _blockGeometry->getMaterial(iX, iY + 1) != 0 && _blockGeometry->getMaterial(iX, iY - 1) != 1 && _blockGeometry->getMaterial(iX, iY - 1) != 0) { if (_blockGeometry->getMaterial(iX + 1, iY) == 1) { discreteNormal[0] = 0; discreteNormal[1] = -1; discreteNormal[2] = 0; } if (_blockGeometry->getMaterial(iX - 1, iY) == 1) { discreteNormal[0] = 0; discreteNormal[1] = 1; discreteNormal[2] = 0; } } /// boundary1N and boundary1P if (_blockGeometry->getMaterial(iX + 1, iY) != 1 && _blockGeometry->getMaterial(iX + 1, iY) != 0 && _blockGeometry->getMaterial(iX - 1, iY) != 1 && _blockGeometry->getMaterial(iX - 1, iY) != 0) { if (_blockGeometry->getMaterial(iX, iY + 1) == 1) { discreteNormal[0] = 0; discreteNormal[1] = 0; discreteNormal[2] = -1; } if (_blockGeometry->getMaterial(iX, iY - 1) == 1) { discreteNormal[0] = 0; discreteNormal[1] = 0; discreteNormal[2] = 1; } } /// externalCornerNN and externalCornerNP if (_blockGeometry->getMaterial(iX + 1, iY) != 1 && _blockGeometry->getMaterial(iX + 1, iY) != 0) { if (_blockGeometry->getMaterial(iX, iY + 1) != 1 && _blockGeometry->getMaterial(iX, iY + 1) != 0 && _blockGeometry->getMaterial(iX + 1, iY + 1) == 1) { discreteNormal[0] = 1; discreteNormal[1] = -1; discreteNormal[2] = -1; } if (_blockGeometry->getMaterial(iX, iY - 1) != 1 && _blockGeometry->getMaterial(iX, iY - 1) != 0 && _blockGeometry->getMaterial(iX + 1, iY - 1) == 1) { discreteNormal[0] = 1; discreteNormal[1] = -1; discreteNormal[2] = 1; } } /// externalCornerPN and externalCornerPP if (_blockGeometry->getMaterial(iX - 1, iY) != 1 && _blockGeometry->getMaterial(iX - 1, iY) != 0) { if (_blockGeometry->getMaterial(iX, iY + 1) != 1 && _blockGeometry->getMaterial(iX, iY + 1) != 0 && _blockGeometry->getMaterial(iX - 1, iY + 1) == 1) { discreteNormal[0] = 1; discreteNormal[1] = 1; discreteNormal[2] = -1; } if (_blockGeometry->getMaterial(iX, iY - 1) != 1 && _blockGeometry->getMaterial(iX, iY - 1) != 0 && _blockGeometry->getMaterial(iX - 1, iY - 1) == 1) { discreteNormal[0] = 1; discreteNormal[1] = 1; discreteNormal[2] = 1; } } /// internalCornerNN and internalCornerNP if (_blockGeometry->getMaterial(iX - 1, iY) != 1 && _blockGeometry->getMaterial(iX - 1, iY) != 0) { if (_blockGeometry->getMaterial(iX, iY - 1) != 1 && _blockGeometry->getMaterial(iX, iY - 1) != 0 && _blockGeometry->getMaterial(iX - 1, iY - 1) == 0) { discreteNormal[0] = 2; discreteNormal[1] = -1; discreteNormal[2] = -1; } if (_blockGeometry->getMaterial(iX, iY + 1) != 1 && _blockGeometry->getMaterial(iX, iY + 1) != 0 && _blockGeometry->getMaterial(iX - 1, iY + 1) == 0) { discreteNormal[0] = 2; discreteNormal[1] = -1; discreteNormal[2] = 1; } } /// internalCornerPN and internalCornerPP if (_blockGeometry->getMaterial(iX + 1, iY) != 1 && _blockGeometry->getMaterial(iX + 1, iY) != 0) { if (_blockGeometry->getMaterial(iX, iY - 1) != 1 && _blockGeometry->getMaterial(iX, iY - 1) != 0 && _blockGeometry->getMaterial(iX + 1, iY - 1) == 0) { discreteNormal[0] = 2; discreteNormal[1] = 1; discreteNormal[2] = -1; } if (_blockGeometry->getMaterial(iX, iY + 1) != 1 && _blockGeometry->getMaterial(iX, iY + 1) != 0 && _blockGeometry->getMaterial(iX + 1, iY + 1) == 0) { discreteNormal[0] = 2; discreteNormal[1] = 1; discreteNormal[2] = 1; } } } return discreteNormal; } template std::vector BlockGeometryStatistics2D::computeNormal(int iX, int iY) { update(); std::vector normal (2,int(0)); if (iX != 0) { if (_blockGeometry->getMaterial(iX - 1, iY) == 1) { normal[0] = -1; } } if (iX != _nX - 1) { if (_blockGeometry->getMaterial(iX + 1, iY) == 1) { normal[0] = 1; } } if (iY != 0) { if (_blockGeometry->getMaterial(iX, iY - 1) == 1) { normal[1] = -1; } } if (iY != _nY - 1) { if (_blockGeometry->getMaterial(iX, iY + 1) == 1) { normal[1] = 1; } } return normal; } template std::vector BlockGeometryStatistics2D::computeNormal(int material) { update(); std::vector normal (2,int(0)); std::vector minC = getMinLatticeR(material); std::vector maxC = getMaxLatticeR(material); for (int iX = minC[0]; iX<=maxC[0]; iX++) { for (int iY = minC[1]; iY<=maxC[1]; iY++) { if (_blockGeometry->getMaterial(iX,iY) == material) { normal[0]+=computeNormal(iX,iY)[0]; normal[1]+=computeNormal(iX,iY)[1]; } } } T norm = sqrt(normal[0]*normal[0]+normal[1]*normal[1]); if (norm>0.) { normal[0]/=norm; normal[1]/=norm; } return normal; } template std::vector BlockGeometryStatistics2D::computeDiscreteNormal(int material, T maxNorm) { update(); std::vector normal = computeNormal(material); std::vector discreteNormal(2,int(0)); T smallestAngle = T(0); for (int iX = -1; iX<=1; iX++) { for (int iY = -1; iY<=1; iY++) { T norm = sqrt(iX*iX+iY*iY); if (norm>0.&& norm=smallestAngle) { smallestAngle=angle; discreteNormal[0] = iX; discreteNormal[1] = iY; } } } } return discreteNormal; } template bool BlockGeometryStatistics2D::check(int material, int iX, int iY, unsigned offsetX, unsigned offsetY) { update(); bool found = true; for (int iOffsetX = -offsetX; iOffsetX <= (int) offsetX; ++iOffsetX) { for (int iOffsetY = -offsetY; iOffsetY <= (int) offsetY; ++iOffsetY) { if (_blockGeometry->getMaterial(iX + iOffsetX, iY + iOffsetY) != material) { found = false; } } } return found; } template bool BlockGeometryStatistics2D::find(int material, unsigned offsetX, unsigned offsetY, int& foundX, int& foundY) { update(); bool found = false; for (foundX = 0; foundX < _nX; foundX++) { for (foundY = 0; foundY < _nY; foundY++) { found = check(material, foundX, foundY, offsetX, offsetY); if (found) { return found; } } } return found; } template void BlockGeometryStatistics2D::print() { update(); std::map::iterator iter; for (iter = _material2n.begin(); iter != _material2n.end(); iter++) { clout << "materialNumber=" << iter->first << "; count=" << iter->second << "; minLatticeR=(" << _material2min[iter->first][0] <<","<< _material2min[iter->first][1] <<")" << "; maxLatticeR=(" << _material2max[iter->first][0] <<","<< _material2max[iter->first][1] <<")" << std::endl; } } template void BlockGeometryStatistics2D::takeStatistics(int iX, int iY) { int type = _blockGeometry->getMaterial(iX, iY); if (_material2n.count(type) == 0) { _material2n[type] = 1; std::vector minCo; std::vector maxCo; minCo.push_back(iX); minCo.push_back(iY); _material2min[type] = minCo; maxCo.push_back(iX); maxCo.push_back(iY); _material2max[type] = maxCo; } else { _material2n[type]++; if (iX < _material2min[type][0]) { _material2min[type][0] = iX; } if (iY < _material2min[type][1]) { _material2min[type][1] = iY; } if (iX > _material2max[type][0]) { _material2max[type][0] = iX; } if (iY > _material2max[type][1]) { _material2max[type][1] = iY; } } } // This function compares two discrete normals (discreteNormal, discreteNormal2) in case of a duplicate assignment of boundary types. // The goal of this function is to combine these special boundaryVoxels to an existing one (in this case boundary or externalEdge) according to // the x-, y- and z-values of their discrete normals. // In the following the algorithm is declared only for the x value, but it is also valid for the y and z values. // // for x1 = x2, the new value of x is x1 (1) // for x1*x2 = -1, the new value of x is 0 (2) // for x1*x2 = 0, the new value is 0 (3) // // It may be possible that all three values equal 0. To avoid that the values are tested again (x²+y²+z²==0) and the loosest assumption (3) is // redefined to. // // If x,y and z == 0 --> find those x,y or z which are 0 because of (3) and redefine them to the value !=0 // // Additionally the calculated entries are multiplied with (-1) to get the right existing boundary. } // namespace olb #endif