/*
* Copyright (C) 2015 Marie-Luise Maier, Mathias J. Krause, Sascha Janz
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** Alberto Di Renzo, Francesco Paolo Di Maio:
* "Comparison of contact-force models for the simulation of collisions in
* DEM-based granular ow codes",
* Chemical Engineering Science 59 (2004) 525 - 541
*/
#ifndef HERTZMINDLINDERESIEWICZ3D_HH
#define HERTZMINDLINDERESIEWICZ3D_HH
#include
#include "hertzMindlinDeresiewicz3D.h"
namespace olb {
template class PARTICLETYPE, typename DESCRIPTOR>
HertzMindlinDeresiewicz3D::HertzMindlinDeresiewicz3D(
T G1, T G2, T v1, T v2, T scale1, T scale2, bool validationKruggelEmden) :
Force3D(), _G1(G1), _G2(G2), _v1(v1), _v2(v2), _scale1(
scale1), _scale2(scale2), _validationKruggelEmden(validationKruggelEmden)
{
// E-Modul Particle
E1 = 2 * (1 + _v1) * _G1;
E2 = 2 * (1 + _v2) * _G2;
// equivalent combined E-Modul
eE = (1 - pow(_v1, 2)) / E1 + (1 - pow(_v2, 2)) / E2;
eE = 1 / eE;
// equivalent combined E-Modul
eG = (2.0 - _v1) / _G1 + (2 - _v2) / _G2;
eG = 1. / eG;
}
template class PARTICLETYPE, typename DESCRIPTOR>
void HertzMindlinDeresiewicz3D::applyForce(
typename std::deque >::iterator p, int pInt,
ParticleSystem3D& pSys)
{
T force[3] = {T(), T(), T()};
computeForce(p, pInt, pSys, force);
}
template class PARTICLETYPE, typename DESCRIPTOR>
void HertzMindlinDeresiewicz3D::computeForce(
typename std::deque >::iterator p, int pInt,
ParticleSystem3D& pSys, T force[3])
{
std::vector> ret_matches;
// kind of contactDetection has to be chosen in application
pSys.getContactDetection()->getMatches(pInt, ret_matches);
PARTICLETYPE* p2 = NULL;
// iterator walks through number of neighbored particles = ret_matches
for (const auto& it : ret_matches) {
if (!util::nearZero(it.second)) {
p2 = &pSys[it.first];
// overlap
T delta = (p2->getRad() + p->getRad()) - sqrt(it.second);
// equivalent mass
T M = p->getMass() * p2->getMass() / (p->getMass() + p2->getMass());
// equivalent radius
T R = p->getRad() * p2->getRad() / (p->getRad() + p2->getRad());
// relative velocity
std::vector < T > _velR(3, T());
_velR[0] = -(p2->getVel()[0] - p->getVel()[0]);
_velR[1] = -(p2->getVel()[1] - p->getVel()[1]);
_velR[2] = -(p2->getVel()[2] - p->getVel()[2]);
std::vector < T > _d(3, T());
std::vector < T > _normal(3, T());
//_d: vector from particle1 to particle2
_d[0] = p2->getPos()[0] - p->getPos()[0];
_d[1] = p2->getPos()[1] - p->getPos()[1];
_d[2] = p2->getPos()[2] - p->getPos()[2];
if ( !util::nearZero(util::norm(_d)) ) {
_normal = util::normalize(_d);
}
else {
return;
}
Vector d_(_d);
Vector velR_(_velR);
T dot = velR_[0] * _normal[0] + velR_[1] * _normal[1] + velR_[2] * _normal[2];
// normal part of relative velocity
// normal relative to surface of particles at contact point
std::vector < T > _velN(3, T());
_velN[0] = dot * _normal[0];
_velN[1] = dot * _normal[1];
_velN[2] = dot * _normal[2];
// tangential part of relative velocity
// tangential relative to surface of particles at contact point
std::vector < T > _velT(3, T());
_velT[0] = _velR[0] - _velN[0];
_velT[1] = _velR[1] - _velN[1];
_velT[2] = _velR[2] - _velN[2];
if (delta > 0.) {
// Force normal
// spring constant in normal direction
// (Alberto Di Renzo, Francesco Paolo Di Maio, Chemical Engineering Science 59 (2004) 525 - 541)
// constant kn from H. Kruggel-Endem
T kn = 4 / 3. * sqrt(R) * eE;
if (_validationKruggelEmden) {
kn = 7.35e9; // to compare to Kruggel-Emden
}
// part of mechanical force of spring in normal direction
// Hertz Contact (P. A. Langston, Powder Technology 85 (1995))
std::vector < T > Fs_n(3, T());
Fs_n[0] = -kn * pow(delta, 1.5) * _normal[0];
Fs_n[1] = -kn * pow(delta, 1.5) * _normal[1];
Fs_n[2] = -kn * pow(delta, 1.5) * _normal[2];
// part of mechanical force of damper in normal direction
// damped linear spring (Cundall, Strack 1979)
// (K.W. Chu, A.B. Yu, Powder Technology 179 (2008) 104 – 114)
// damper constant in normal direction
// constant eta_n from H. Kruggel-Endem
T eta_n = 0.3 * sqrt(4.5 * M * sqrt(delta) * kn);
if (_validationKruggelEmden) {
eta_n = 1.96e5; // to compare to Kruggel-Emden
}
std::vector < T > Fd_n(3, T());
Fd_n[0] = -eta_n * _velN[0] * sqrt(delta);
Fd_n[1] = -eta_n * _velN[1] * sqrt(delta);
Fd_n[2] = -eta_n * _velN[2] * sqrt(delta);
std::vector < T > F_n(3, T());
F_n[0] = Fs_n[0] + Fd_n[0];
F_n[1] = Fs_n[1] + Fd_n[1];
F_n[2] = Fs_n[2] + Fd_n[2];
// Force tangential
// spring constant in tangential direction
// (N.G. Deen, Chemical Engineering Science 62 (2007) 28 - 44)
T kt = 2 * sqrt(2 * R) * _G1 / (2 - _v1) * pow(delta, 0.5);
// damper constant in normal direction
T eta_t = 2 * sqrt(2. / 7. * M * kt);
// part of mechanical force of damper in tangential direction
std::vector < T > F_t(3, T());
F_t[0] = -eta_t * _velT[0];
F_t[1] = -eta_t * _velT[1];
F_t[2] = -eta_t * _velT[2];
// entire force
// factor _scale to prevent instability
force[0] = _scale1 * F_n[0] + _scale2 * F_t[0];
force[1] = _scale1 * F_n[1] + _scale2 * F_t[1];
force[2] = _scale1 * F_n[2] + _scale2 * F_t[2];
p->getForce()[0] += force[0] * 0.5 ;
p->getForce()[1] += force[1] * 0.5 ;
p->getForce()[2] += force[2] * 0.5 ;
p2->getForce()[0] -= force[0] * 0.5 ;
p2->getForce()[1] -= force[1] * 0.5 ;
p2->getForce()[2] -= force[2] * 0.5 ;
}
}
}
}
}
#endif