/* * Copyright (C) 2015 Marie-Luise Maier, Mathias J. Krause, Sascha Janz * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** Alberto Di Renzo, Francesco Paolo Di Maio: * "Comparison of contact-force models for the simulation of collisions in * DEM-based granular ow codes", * Chemical Engineering Science 59 (2004) 525 - 541 */ #ifndef HERTZMINDLINDERESIEWICZ3D_HH #define HERTZMINDLINDERESIEWICZ3D_HH #include #include "hertzMindlinDeresiewicz3D.h" namespace olb { template class PARTICLETYPE, template< typename W> class DESCRIPTOR> HertzMindlinDeresiewicz3D::HertzMindlinDeresiewicz3D( T G1, T G2, T v1, T v2, T scale1, T scale2, bool validationKruggelEmden) : Force3D(), _G1(G1), _G2(G2), _v1(v1), _v2(v2), _scale1( scale1), _scale2(scale2), _validationKruggelEmden(validationKruggelEmden) { // E-Modul Particle E1 = 2 * (1 + _v1) * _G1; E2 = 2 * (1 + _v2) * _G2; // equivalent combined E-Modul eE = (1 - pow(_v1, 2)) / E1 + (1 - pow(_v2, 2)) / E2; eE = 1 / eE; // equivalent combined E-Modul eG = (2.0 - _v1) / _G1 + (2 - _v2) / _G2; eG = 1. / eG; } template class PARTICLETYPE, template< typename W> class DESCRIPTOR> void HertzMindlinDeresiewicz3D::applyForce( typename std::deque >::iterator p, int pInt, ParticleSystem3D& pSys) { T force[3] = {T(), T(), T()}; computeForce(p, pInt, pSys, force); } template class PARTICLETYPE, template< typename W> class DESCRIPTOR> void HertzMindlinDeresiewicz3D::computeForce( typename std::deque >::iterator p, int pInt, ParticleSystem3D& pSys, T force[3]) { if (p->getSActivity() > 1) { std::vector> ret_matches; // kind of contactDetection has to be chosen in application pSys.getContactDetection()->getMatches(pInt, ret_matches); PARTICLETYPE* p2 = NULL; // iterator walks through number of neighbored particles = ret_matches for (const auto& it : ret_matches) { if (!util::nearZero(it.second)) { p2 = &pSys[it.first]; // overlap T delta = (p2->getRad() + p->getRad()) - sqrt(it.second); /// Limit Overlap // T deltaMax = 0.03 * (p2->getRad() + p->getRad()) ; // if (delta > deltaMax ) { // T dpos[3] = {T(0), T(0), T(0) } ; // for (int i = 0; i <= 2; i++) { // dpos[i] = _normal[i] * 0.5 * (delta - deltaMax) ; // p->getPos()[i] -= 1.* dpos[i]; // p2->getPos()[i] += 1.* dpos[i]; // } // delta = deltaMax * (p2->getRad() + p->getRad()); // } // equivalent mass T M = p->getMass() * p2->getMass() / (p->getMass() + p2->getMass()); // equivalent radius T R = p->getRad() * p2->getRad() / (p->getRad() + p2->getRad()); // relative velocity std::vector < T > _velR(3, T()); _velR[0] = -(p2->getVel()[0] - p->getVel()[0]); // gehört das Minus hier hin? _velR[1] = -(p2->getVel()[1] - p->getVel()[1]); _velR[2] = -(p2->getVel()[2] - p->getVel()[2]); std::vector < T > _d(3, T()); std::vector < T > _normal(3, T()); //_d: vector from particle1 to particle2 _d[0] = p2->getPos()[0] - p->getPos()[0]; _d[1] = p2->getPos()[1] - p->getPos()[1]; _d[2] = p2->getPos()[2] - p->getPos()[2]; if ( !util::nearZero(util::norm(_d)) ) { _normal = util::normalize(_d); } else { return; } Vector d_(_d); Vector velR_(_velR); T dot = velR_[0] * _normal[0] + velR_[1] * _normal[1] + velR_[2] * _normal[2]; // normal part of relative velocity // normal relative to surface of particles at contact point std::vector < T > _velN(3, T()); _velN[0] = dot * _normal[0]; _velN[1] = dot * _normal[1]; _velN[2] = dot * _normal[2]; // tangential part of relative velocity // tangential relative to surface of particles at contact point std::vector < T > _velT(3, T()); _velT[0] = _velR[0] - _velN[0]; _velT[1] = _velR[1] - _velN[1]; _velT[2] = _velR[2] - _velN[2]; if (delta > 0.) { // Force normal // spring constant in normal direction // (Alberto Di Renzo, Francesco Paolo Di Maio, Chemical Engineering Science 59 (2004) 525 - 541) // constant kn from H. Kruggel-Endem T kn = 4 / 3. * sqrt(R) * eE; if (_validationKruggelEmden) { kn = 7.35e9; // to compare to Kruggel-Emden } // part of mechanical force of spring in normal direction // Hertz Contact (P. A. Langston, Powder Technology 85 (1995)) std::vector < T > Fs_n(3, T()); Fs_n[0] = -kn * pow(delta, 1.5) * _normal[0]; Fs_n[1] = -kn * pow(delta, 1.5) * _normal[1]; Fs_n[2] = -kn * pow(delta, 1.5) * _normal[2]; // part of mechanical force of damper in normal direction // damped linear spring (Cundall, Strack 1979) // (K.W. Chu, A.B. Yu, Powder Technology 179 (2008) 104 – 114) // damper constant in normal direction // constant eta_n from H. Kruggel-Endem T eta_n = 0.3 * sqrt(4.5 * M * sqrt(delta) * kn); if (_validationKruggelEmden) { eta_n = 1.96e5; // to compare to Kruggel-Emden } std::vector < T > Fd_n(3, T()); Fd_n[0] = -eta_n * _velN[0] * sqrt(delta); Fd_n[1] = -eta_n * _velN[1] * sqrt(delta); Fd_n[2] = -eta_n * _velN[2] * sqrt(delta); std::vector < T > F_n(3, T()); F_n[0] = Fs_n[0] + Fd_n[0]; F_n[1] = Fs_n[1] + Fd_n[1]; F_n[2] = Fs_n[2] + Fd_n[2]; // Force tangential // spring constant in tangential direction // (N.G. Deen, Chemical Engineering Science 62 (2007) 28 - 44) T kt = 2 * sqrt(2 * R) * _G1 / (2 - _v1) * pow(delta, 0.5); // damper constant in normal direction T eta_t = 2 * sqrt(2. / 7. * M * kt); // part of mechanical force of damper in tangential direction std::vector < T > F_t(3, T()); F_t[0] = -eta_t * _velT[0]; F_t[1] = -eta_t * _velT[1]; F_t[2] = -eta_t * _velT[2]; // entire force // factor _scale to prevent instability force[0] = _scale1 * F_n[0] + _scale2 * F_t[0]; force[1] = _scale1 * F_n[1] + _scale2 * F_t[1]; force[2] = _scale1 * F_n[2] + _scale2 * F_t[2]; p->getForce()[0] += force[0] * 0.5 ; p->getForce()[1] += force[1] * 0.5 ; p->getForce()[2] += force[2] * 0.5 ; p2->getForce()[0] -= force[0] * 0.5 ; p2->getForce()[1] -= force[1] * 0.5 ; p2->getForce()[2] -= force[2] * 0.5 ; if ((p->getSActivity() || p2->getSActivity()) == 3) { p->setSActivity(3); p2->setSActivity(3); } if ((p->getSActivity() == 4) && (p2->getSActivity() != (4 || 3))) { p2->setSActivity(3); } if ((p2->getSActivity() == 4) && (p->getSActivity() != (4 || 3))) { p->setSActivity(3); } } } } } } #endif