/*
* Copyright (C) 2018 Marie-Luise Maier
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef MagneticForceFromHField3D_HH
#define MagneticForceFromHField3D_HH
#include
#include
#include "magneticForceFromHField3D.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace olb {
/*
template class PARTICLETYPE, typename DESCRIPTOR>
MagneticForceFromHField3D::MagneticForceFromHField3D(
SuperLattice3D& sLattice,
SuperLatticeField3D& sLatticeHField, T Mp, T scale) :
Force3D(), _sLattice(sLattice), _sLatticeHField(
sLatticeHField), _Mp(Mp), _scale(scale) {
}
template class PARTICLETYPE, typename DESCRIPTOR>
void MagneticForceFromHField3D::applyForce(
typename std::deque >::iterator p, int pInt,
ParticleSystem3D& pSys) {
// vacuum permeability
T mu_0 = 4. * M_PI * 1.e-7;
T Vp = 4. / 3. * M_PI * std::pow(p->getRad(), 3);
T physLatticeLength =
_sLattice.getCuboidGeometry().get(p->getCuboid()).getDeltaR();
int glob = p->getCuboid();
int latticePos[3] = { 0, 0, 0 };
_sLattice.getCuboidGeometry().get(p->getCuboid()).getLatticeR(latticePos,
&p->getPos()[0]);
T H[3] = { T(), T(), T() };
T HXplus[3] = { T(), T(), T() };
T HYplus[3] = { T(), T(), T() };
T HZplus[3] = { T(), T(), T() };
int X[4] = { glob, latticePos[0], latticePos[1], latticePos[2] };
int Xplus[4] = { glob, latticePos[0] + 1, latticePos[1], latticePos[2] };
int Yplus[4] = { glob, latticePos[0], latticePos[1] + 1, latticePos[2] };
int Zplus[4] = { glob, latticePos[0], latticePos[1], latticePos[2] + 1 };
T gradHx[3] = { T(), T(), T() };
T gradHy[3] = { T(), T(), T() };
T gradHz[3] = { T(), T(), T() };
T modGradH[3] = { T(), T(), T() };
_sLatticeHField(H, X);
_sLatticeHField(HXplus, Xplus);
_sLatticeHField(HYplus, Yplus);
_sLatticeHField(HZplus, Zplus);
if (!(util::nearZero(H[0]) && util::nearZero(H[1]) && util::nearZero(H[2]))) {
Vector M(H[0], H[1], H[2]);
M.normalize();
M[0] *= _Mp;
M[1] *= _Mp;
M[2] *= _Mp;
gradHx[0] = (HXplus[0] - H[0]) / physLatticeLength;
gradHx[1] = (HXplus[1] - H[1]) / physLatticeLength;
gradHx[2] = (HXplus[2] - H[2]) / physLatticeLength;
gradHy[0] = (HYplus[0] - H[0]) / physLatticeLength;
gradHy[1] = (HYplus[1] - H[1]) / physLatticeLength;
gradHy[2] = (HYplus[2] - H[2]) / physLatticeLength;
gradHz[0] = (HZplus[0] - H[0]) / physLatticeLength;
gradHz[1] = (HZplus[1] - H[1]) / physLatticeLength;
gradHz[2] = (HZplus[2] - H[2]) / physLatticeLength;
// modGradH = (M \cdot \nabla) H
modGradH[0] = M[0] * gradHx[0] + M[1] * gradHy[0] + M[2] * gradHz[0];
modGradH[1] = M[0] * gradHx[1] + M[1] * gradHy[1] + M[2] * gradHz[1];
modGradH[2] = M[0] * gradHx[2] + M[1] * gradHy[2] + M[2] * gradHz[2];
if (modGradH[0] > T() || modGradH[1] > T() || modGradH[2] > T()) {
std::cout << "without scale: modGradH[0] " << Vp * mu_0 * modGradH[0]
<< "modGradH[1] " << Vp * mu_0 * modGradH[1] << "modGradH[2] "
<< Vp * mu_0 * modGradH[2] << std::endl;
}
p->getForce()[0] += Vp * mu_0 * modGradH[0] * _scale;
p->getForce()[1] += Vp * mu_0 * modGradH[1] * _scale;
p->getForce()[2] += Vp * mu_0 * modGradH[2] * _scale;
}
}
*/
}
#endif