/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2019 Davide Dapelo * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /* Drag force models for Lagrangian two-way coupling -- header file. */ #ifndef LB_DRAG_MODELS_H #define LB_DRAG_MODELS_H #include "functors/lattice/reductionF3D.h" #include "twoWayHelperFunctionals.h" namespace olb { /** Abstact base class for DragModelBase. * Its raison d'etre consists of not being templetized in Lattice. */ template class Particle> class DragModel { public: /// Returns the scalar drag coefficient to overload. globicFull = { globic, latticeRoundedP[0, ..., 2] } virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[])=0; protected: /// Functional to compute particle Reynolds number std::shared_ptr > _reP; }; /** Abstact class for all the drag models. * The virtual method computeDragCoeff returns the drag coefficient. * Input parameters in attice units. */ template class Particle> class DragModelBase : public DragModel { public: /// Constructor DragModelBase(UnitConverter& converter); /// Returns the scalar drag coefficient to overload. //virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globic)=0; protected: UnitConverter& _converter; // reference to a UnitConverter }; /** Class to compute a drag coefficient Cd=1.83 for low-Re Stokes drag. */ template class Particle> class StokesSimplifiedDragModel : public DragModelBase { public: /// Constructor StokesSimplifiedDragModel(UnitConverter& converter); /// Returns the scalar drag coefficient. globicFull = { globic, latticeRoundedP[0, ..., 2] } virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[]) override; }; /** Class to compute the standard drag coefficient * as in Morsi and Alexander (1972). */ template class Particle> class MorsiDragModel : public DragModelBase { public: /// Constructor MorsiDragModel(UnitConverter& converter); /// Returns the scalar drag coefficient. globicFull = { globic, latticeRoundedP[0, ..., 2] } virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[]) override; }; /** Class to compute the drag coefficient for gas bubbles in a liquid fluid phase * as in Dewsbury et al. (1999). */ template class Particle> class DewsburyDragModel : public DragModelBase { public: /// Constructor DewsburyDragModel(UnitConverter& converter); /// Returns the scalar drag coefficient. globicFull = { globic, latticeRoundedP[0, ..., 2] } virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[]) override; }; /** Class to compute the drag coefficient for gas bubbles in a liquid fluid phase * as in Dewsbury et al. (1999), in a power-law fluid. */ template class Particle> class PowerLawDewsburyDragModel : public DewsburyDragModel { public: /// Constructor PowerLawDewsburyDragModel ( UnitConverter& converter, SuperLattice3D& sLattice ); }; } #endif