/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2019 Davide Dapelo
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* Drag force models for Lagrangian two-way coupling -- header file.
*/
#ifndef LB_DRAG_MODELS_H
#define LB_DRAG_MODELS_H
#include "functors/lattice/reductionF3D.h"
#include "twoWayHelperFunctionals.h"
namespace olb {
/** Abstact base class for DragModelBase.
* Its raison d'etre consists of not being templetized in Lattice.
*/
template class Particle>
class DragModel {
public:
/// Returns the scalar drag coefficient to overload. globicFull = { globic, latticeRoundedP[0, ..., 2] }
virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[])=0;
protected:
/// Functional to compute particle Reynolds number
std::shared_ptr > _reP;
};
/** Abstact class for all the drag models.
* The virtual method computeDragCoeff returns the drag coefficient.
* Input parameters in attice units.
*/
template class Particle>
class DragModelBase : public DragModel {
public:
/// Constructor
DragModelBase(UnitConverter& converter);
/// Returns the scalar drag coefficient to overload.
//virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globic)=0;
protected:
UnitConverter& _converter; // reference to a UnitConverter
};
/** Class to compute a drag coefficient Cd=1.83 for low-Re Stokes drag.
*/
template class Particle>
class StokesSimplifiedDragModel : public DragModelBase {
public:
/// Constructor
StokesSimplifiedDragModel(UnitConverter& converter);
/// Returns the scalar drag coefficient. globicFull = { globic, latticeRoundedP[0, ..., 2] }
virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[]) override;
};
/** Class to compute the standard drag coefficient
* as in Morsi and Alexander (1972).
*/
template class Particle>
class MorsiDragModel : public DragModelBase {
public:
/// Constructor
MorsiDragModel(UnitConverter& converter);
/// Returns the scalar drag coefficient. globicFull = { globic, latticeRoundedP[0, ..., 2] }
virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[]) override;
};
/** Class to compute the drag coefficient for gas bubbles in a liquid fluid phase
* as in Dewsbury et al. (1999).
*/
template class Particle>
class DewsburyDragModel : public DragModelBase {
public:
/// Constructor
DewsburyDragModel(UnitConverter& converter);
/// Returns the scalar drag coefficient. globicFull = { globic, latticeRoundedP[0, ..., 2] }
virtual T operator() (Particle* p, T latticeVelF[], T latticeVelP[], int globicFull[]) override;
};
/** Class to compute the drag coefficient for gas bubbles in a liquid fluid phase
* as in Dewsbury et al. (1999), in a power-law fluid.
*/
template class Particle>
class PowerLawDewsburyDragModel : public DewsburyDragModel {
public:
/// Constructor
PowerLawDewsburyDragModel (
UnitConverter& converter, SuperLattice3D& sLattice );
};
}
#endif