/* This file is part of the OpenLB library
*
* Copyright (C) 2017 Adrian Kummerlaender
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef HYPERPLANE_LATTICE_3D_HH
#define HYPERPLANE_LATTICE_3D_HH
#include "hyperplaneLattice3D.h"
namespace olb {
template
int HyperplaneLattice3D::computeMaxLatticeDistance(Cuboid3D&& cuboid) const
{
const Vector origin = cuboid.getOrigin();
const Vector extend = cuboid.getExtend();
const T deltaR = cuboid.getDeltaR();
T maxPhysDistance = T();
T tmp;
Vector tmpO;
Vector tmpE;
for(int iDim=0; iDim<3; ++iDim){
tmpO[iDim] = origin[iDim] - _origin[iDim];
tmpE[iDim] = origin[iDim] + extend[iDim]*deltaR - _origin[iDim];
}
tmp = sqrt(tmpO[0]*tmpO[0] + tmpO[1]*tmpO[1] + tmpO[2]*tmpO[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt((tmpE[0]*tmpE[0] + tmpO[1]*tmpO[1] + tmpO[2]*tmpO[2]));
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt(tmpO[0]*tmpO[0] + tmpE[1]*tmpE[1] + tmpO[2]*tmpO[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt(tmpO[0]*tmpO[0] + tmpO[1]*tmpO[1] + tmpE[2]*tmpE[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt(tmpO[0]*tmpO[0] + tmpE[1]*tmpE[1] + tmpE[2]*tmpE[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt(tmpE[0]*tmpE[0] + tmpO[1]*tmpO[1] + tmpE[2]*tmpE[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt(tmpE[0]*tmpE[0] + tmpE[1]*tmpE[1] + tmpO[2]*tmpO[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
tmp = sqrt(tmpE[0]*tmpE[0] + tmpE[1]*tmpE[1] + tmpE[2]*tmpE[2]);
if (maxPhysDistance < tmp) {
maxPhysDistance = tmp;
}
return int(maxPhysDistance/_h) + 1;
}
template
void HyperplaneLattice3D::constructCuboid(
CuboidGeometry3D& geometry, int maxLatticeDistance)
{
int iC;
int minX = -maxLatticeDistance;
int maxX = maxLatticeDistance;
int minY = -maxLatticeDistance;
int maxY = maxLatticeDistance;
bool found = false;
for ( int iX = -maxLatticeDistance; iX < maxLatticeDistance; ++iX ) {
for ( int iY = -maxLatticeDistance; iY < maxLatticeDistance; ++iY ) {
if ( geometry.getC(getPhysR(iX, iY), iC) ) {
minX = iX;
found = true;
break;
}
}
if (found) {
break;
}
}
found = false;
for ( int iX = maxLatticeDistance; iX > -maxLatticeDistance; --iX ) {
for ( int iY = -maxLatticeDistance; iY < maxLatticeDistance; ++iY ) {
if ( geometry.getC(getPhysR(iX, iY), iC) ) {
maxX = iX;
found = true;
break;
}
}
if (found) {
break;
}
}
found = false;
for ( int iY = -maxLatticeDistance; iY < maxLatticeDistance; ++iY ) {
for ( int iX = -maxLatticeDistance; iX < maxLatticeDistance; ++iX ) {
if ( geometry.getC(getPhysR(iX, iY), iC) ) {
minY = iY;
found = true;
break;
}
}
if (found) {
break;
}
}
found = false;
for ( int iY = maxLatticeDistance; iY > -maxLatticeDistance; --iY ) {
for ( int iX = -maxLatticeDistance; iX < maxLatticeDistance; ++iX ) {
if ( geometry.getC(getPhysR(iX, iY), iC) ) {
maxY = iY;
found = true;
break;
}
}
if (found) {
break;
}
}
_nx = maxX - minX + 1;
_ny = maxY - minY + 1;
_origin = _origin + double(minX)*_u + double(minY)*_v;
}
template
void HyperplaneLattice3D::setToResolution(int resolution)
{
if (_nx > _ny) {
T newH = _nx*_h/(T) resolution;
_nx = resolution;
_ny = (int) (_ny*_h/newH) + 1;
_h = newH;
}
else {
T newH = _ny*_h/(T) resolution;
_ny = resolution;
_nx = (int) (_nx*_h/newH) + 1;
_h = newH;
}
_u.normalize(_h);
_v.normalize(_h);
}
template
HyperplaneLattice3D::HyperplaneLattice3D(
CuboidGeometry3D& geometry, Hyperplane3D hyperplane)
: _hyperplane(hyperplane),
_origin(hyperplane.origin),
_u(hyperplane.u),
_v(hyperplane.v),
_h(geometry.getMinDeltaR())
{
_u.normalize(_h);
_v.normalize(_h);
const int maxLatticeDistance = computeMaxLatticeDistance(geometry.getMotherCuboid());
// compute _hyperplane.origin, _nx, _ny so that the cuboid is right inside the geometry
constructCuboid(geometry, maxLatticeDistance);
}
template
HyperplaneLattice3D::HyperplaneLattice3D(
CuboidGeometry3D& geometry, Hyperplane3D hyperplane, int resolution)
: _hyperplane(hyperplane),
_origin(hyperplane.origin),
_u(hyperplane.u),
_v(hyperplane.v),
_h(geometry.getMinDeltaR())
{
_u.normalize(_h);
_v.normalize(_h);
const int maxLatticeDistance = computeMaxLatticeDistance(geometry.getMotherCuboid());
// compute _hyperplane.origin, _nx, _ny so that the cuboid is right inside the geometry
constructCuboid(geometry, maxLatticeDistance);
if ( resolution > 0 ) {
setToResolution(resolution);
}
}
template
HyperplaneLattice3D::HyperplaneLattice3D(
CuboidGeometry3D& geometry, Hyperplane3D hyperplane, T h)
: _hyperplane(hyperplane),
_origin(hyperplane.origin),
_u(hyperplane.u),
_v(hyperplane.v),
_h(h)
{
if ( util::nearZero(_h) ) {
_h = geometry.getMinDeltaR();
}
_u.normalize(_h);
_v.normalize(_h);
const int maxLatticeDistance = computeMaxLatticeDistance(geometry.getMotherCuboid());
// compute _hyperplane.origin, _nx, _ny so that the cuboid is right inside the geometry
constructCuboid(geometry, maxLatticeDistance);
}
template
HyperplaneLattice3D::HyperplaneLattice3D(
Hyperplane3D hyperplane,
T h, int nx, int ny)
: _hyperplane(hyperplane),
_origin(hyperplane.origin),
_u(hyperplane.u),
_v(hyperplane.v),
_h(h),
_nx(nx),
_ny(ny)
{
_u.normalize(_h);
_v.normalize(_h);
}
template
const Hyperplane3D& HyperplaneLattice3D::getHyperplane() const
{
return _hyperplane;
}
template
Vector HyperplaneLattice3D::getPhysR(const int& planeX, const int& planeY) const
{
return Vector {
_origin[0] + double(planeX)*_u[0] + double(planeY)*_v[0],
_origin[1] + double(planeX)*_u[1] + double(planeY)*_v[1],
_origin[2] + double(planeX)*_u[2] + double(planeY)*_v[2]
};
}
template
int HyperplaneLattice3D::getNx() const
{
return _nx;
}
template
int HyperplaneLattice3D::getNy() const
{
return _ny;
}
template
T HyperplaneLattice3D::getPhysSpacing() const
{
return _h;
}
template
Vector HyperplaneLattice3D::getPhysOrigin() const
{
return _origin;
}
template
Vector HyperplaneLattice3D::getVectorU() const
{
return _u;
}
template
Vector HyperplaneLattice3D::getVectorV() const
{
return _v;
}
}
#endif