From d9bb5e81ffb8a0fd21a72c2c56e1553c228d1a1a Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Sun, 11 Feb 2018 16:00:23 +0100 Subject: Add section on Ramsey theory to graph theory digest --- content/graph_theory.tex | 38 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) diff --git a/content/graph_theory.tex b/content/graph_theory.tex index f4d6e8d..ff3f73a 100644 --- a/content/graph_theory.tex +++ b/content/graph_theory.tex @@ -275,6 +275,44 @@ $$z(n,n;t,t) \in \mathcal{O}(n^{2-\frac{1}{t}})$$ \section*{Ramsey Theory} +For $k \in \N$ the \emph{Ramsey number} $R(k) \in \N$ is the min $n$ s.t. every 2-edge-coloring of $K_n$ contains monochromatic $K_k$. + +\spacing + +For $k, l \in \N$ the \emph{asymmetric Ramsey number} $R(k,l)$ is the min $n$ s.t. every 2-edge-coloring of $K_n$ contains red $K_k$ or blue $K_l$. + +\spacing + +For graphs $G, H$ the \emph{graph Ramsey number} $R(G,H)$ is the min $n$ s.t. every 2-edge-coloring of $K_n$ contains red $G$ or blue $H$. + +\spacing + +For graphs $G, H$ the \emph{induced Ramsey number} $R_\text{ind}(G,H)$ is the min $n$ s.t. there is graph $F$ on $n$ vertices every 2-coloring of which contains red $G$ or blue $H$. + +\spacing + +e.g. $R(2,k) = R(k,2) = k$ and $R(3) = 6$ + +\subsection*{Ramsey Theorem} + +$$\forall k \in \N : \sqrt{2}^k \leq R(k) \leq 4^k$$ + +Particularly Ramsey, asymmetric Ramsey and graph Ramsey numbers are finite. + +\subsection*{Induced Ramsey Theorem} + +$R_\text{ind}(G,H)$ is finite for all graphs $G, H$. + +\subsection*{Er\H{o}s-Szekeres' Theorem} + +Any sequence of $(r-1)(s-1)+1$ distinct numbers in $\R$ contains an ascending subsequence of length $r$ or a descending subsequence of length $s$. + +\subsection*{Schur's Theorem} + +Let $\N$ be colored with $r \in \N$ colors. + +$\implies \exists x, y, z \in \N$ of the same color s.t. $x+y=z$. + \section*{Flows} \section*{Random Graphs} -- cgit v1.2.3