\section*{Anfangswertprobleme} Seien \(\J \subseteq \R\) ein Intervall, \(t_0 \in \J\) mit \(t_0 < \sup \J\), \(D \subseteq \R^m\) offen, \(f \in C(\J \times D, \R^m)\) und \(u_0 \in D\). \vspace*{-4mm} \begin{align*} u'(t) &= f(t, u(t)), t\geq t_0, t\in \J \\ u(t_0) &= u_0 \end{align*} Für das Anfangswertproblem wird ein \(t_1 \in \J\) mit \(t_1 > t_0\) und eine eindeutige Lösung \(u \in C^1([t_0, t_1], \R^m)\) auf \([t_0, t_1]\) gesucht. \subsection*{Lokale Lipschitzstetigkeit im Kontext} Sei \(f \in C(\J \times D, \R^k)\), \(D \subseteq \R^m\) offen und es ex. alle \(\frac{\partial}{\partial x_j} f \in C(\J \times D, \R^k)\) für \(j \in \{1, \hdots, m\}\). Dann ist \(f\) lokal Lipschitz in \(x\). \subsection*{Picard-Lindelöf (lokal)} Seien \(\J\) Intervall, \(D \subseteq \R^m\) offen, \(f \in C(\J \times D, \R^m)\) lokal Lipschitz in \(x\), \(u_0 \in D\), \(t_0 \in \J\) mit \(t_0 < \sup \J\). Dann gelten: \begin{enumerate}[label=(\alph*)] \item \(\exists t_1 > t_0 \) mit \(t_1 \in \J\) und eind. Lsg. \(u\) auf \([t_0, t_1]\) von \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) \item \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) besitze zwei Lsg. \(v_1\) und \(v_2\) auf \([t_0, T_1] \subseteq \J\) bzw. \([t_0, T_2] \subseteq \J\). Dann stimmen \(v_1\) und \(v_2\) auf \([t_0, T_3]\) mit \(T_3 = \min\{T_1, T_2\}\) überein. \end{enumerate} \subsection*{Picard-Lindelöf (maximal)} Unter den Voraussetzungen von Picard-Lindelöf (lokal) sei \(u_0 \in D\), dann gilt: \begin{enumerate}[label=(\alph*)] \item \(\exists\) max. Existenzzeit \(\overline t(u_0) \in (t_0, \sup \J]\) und eine eindeutige maximale Lösung \(u\) von \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) auf \([t_0, \overline t(u_0))\) \item Wenn \(\overline t(u_0) < \sup \J\), dann \(\exists t_n \in (t_0, \overline t(u_0))\) mit \(\lim_{n \to \infty} t_n = \overline t(u_0)\) so, dass die Blow-Up Bedingung erfüllt ist: \(\lim_{n \to \infty} |u(t_n)|_n = \infty\) oder \(\lim_{n \to \infty} \inf_{x \in \partial D} |u(t_n) - x|_2 = 0\) \end{enumerate} \subsection*{Trennung der Variablen} Sei \(u'(t)=g(t)h(u(t))\) mit \(u(t_0)=u_0\) ein AWP mit \(g \in C(\R)\), \(h \in C((a, b), \R)\), \(u_0 \in (a, b)\) und \(h(u_0) \neq 0\). \(u\) ist Lösung, wenn: \(\forall t \in \J : u(t) \in (a, b)\), \(u \in C^1(\J, \R)\) und \(t_0 \in \J\). \[ u \text{ ist Lösung } \Rightarrow \int_{t_0}^t g(s) ds = \int_{u_0}^{u(t)} \frac{1}{h(x)} dx \] \subsection*{Lemma von Grönwall} Seien \(b \in [0,\infty], \phi \in C([0,b),\R)\) und \(\alpha, \beta \geq 0\). \[\psi(t) := \alpha + \beta \int_0^t \phi(s) ds \text{ für } t \in [0,b)\] Weiter gelte \(\phi \leq \psi\) auf \([0,b)\). Dann gilt: \[\forall t \in [0,b) : \phi(t) \leq \alpha \exp(\beta t)\] \subsection*{Eindeutige Lösbarkeit} Sei \(D = (a,b) \times \R^m\) mit \(-\infty \leq a < b \leq \infty\) und \(f : D \to \R^k\) erfülle die Vor. von Picard-Lindelöf. Gilt weiter \(\|f(t,x)\| \leq \alpha + \beta \|x\|\) für \(\alpha, \beta \geq 0\), dann ist das AWP auf \((a,b)\) eindeutig lösbar.