From d71faec93ec0a55c46810e0d178b2803ee89130c Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Sat, 15 Jun 2019 20:45:27 +0200 Subject: Add support for generating a D3Q19 kernel Note how this basically required no changes besides generalizing cell indexing and adding the symbolic formulation of a D3Q19 BGK collision step. Increasing the neighborhood communication from 9 to 19 cells leads to a significant performance "regression": The 3D kernel yields ~ 360 MLUPS compared to the 2D version's ~ 820 MLUPS. --- symbolic/D3Q19.py | 59 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 59 insertions(+) create mode 100644 symbolic/D3Q19.py (limited to 'symbolic') diff --git a/symbolic/D3Q19.py b/symbolic/D3Q19.py new file mode 100644 index 0000000..789b083 --- /dev/null +++ b/symbolic/D3Q19.py @@ -0,0 +1,59 @@ +from sympy import * +from sympy.codegen.ast import Assignment + +q = 19 +d = 3 + +c = [ Matrix(x) for x in [ + ( 0, 1, 1), (-1, 0, 1), ( 0, 0, 1), ( 1, 0, 1), ( 0, -1, 1), + (-1, 1, 0), ( 0, 1, 0), ( 1, 1, 0), (-1, 0, 0), ( 0, 0, 0), ( 1, 0, 0), (-1,-1, 0), ( 0, -1, 0), ( 1, -1, 0), + ( 0, 1,-1), (-1, 0,-1), ( 0, 0,-1), ( 1, 0,-1), ( 0, -1,-1) +]] + +w = [Rational(*x) for x in [ + (1,36), (1,36), (1,18), (1,36), (1,36), + (1,36), (1,18), (1,36), (1,18), (1,3), (1,18), (1,36), (1,18), (1,36), + (1,36), (1,36), (1,18), (1,36), (1,36) +]] + +c_s = sqrt(Rational(1,3)) + +f_next = symarray('f_next', q) +f_curr = symarray('f_curr', q) + +def moments(f = f_curr, optimize = True): + rho = symbols('rho') + u = Matrix(symarray('u', d)) + + exprs = [ Assignment(rho, sum(f)) ] + + for i, u_i in enumerate(u): + exprs.append(Assignment(u_i, sum([ (c_j*f[j])[i] for j, c_j in enumerate(c) ]) / sum(f))) + + if optimize: + return cse(exprs, optimizations='basic', symbols=numbered_symbols(prefix='m')) + else: + return ([], exprs) + +def equilibrium(): + rho = symbols('rho') + u = Matrix(symarray('u', d)) + + f_eq = [] + + for i, c_i in enumerate(c): + f_eq_i = w[i] * rho * ( 1 + + c_i.dot(u) / c_s**2 + + c_i.dot(u)**2 / (2*c_s**4) + - u.dot(u) / (2*c_s**2) ) + f_eq.append(f_eq_i) + + return f_eq + +def bgk(tau, f_eq = equilibrium(), optimize = True): + exprs = [ Assignment(f_next[i], f_curr[i] + 1/tau * ( f_eq_i - f_curr[i] )) for i, f_eq_i in enumerate(f_eq) ] + + if optimize: + return cse(exprs, optimizations='basic') + else: + return ([], exprs) -- cgit v1.2.3