import pyopencl as cl mf = cl.mem_flags import numpy import time import matplotlib import matplotlib.pyplot as plt matplotlib.use('AGG') import sympy import lbm_d2q9 as D2Q9 from mako.template import Template kernel = """ __constant float tau = ${tau}; bool is_in_circle(float x, float y, float a, float b, float r) { return sqrt(pow(x-a,2)+pow(y-b,2)) < r; } __kernel void equilibrilize(__global __write_only float* f_a, __global __write_only float* f_b) { const unsigned int gid = get_global_id(1)*${nX} + get_global_id(0); __global __write_only float* preshifted_f_a = f_a + gid; __global __write_only float* preshifted_f_b = f_b + gid; if ( is_in_circle(get_global_id(0), get_global_id(1), ${nX//4}, ${nY//4}, ${nX//10}) || is_in_circle(get_global_id(0), get_global_id(1), ${nX//4}, ${nY-nY//4}, ${nX//10}) || is_in_circle(get_global_id(0), get_global_id(1), ${nX-nX//4}, ${nY//4}, ${nX//10}) || is_in_circle(get_global_id(0), get_global_id(1), ${nX-nX//4}, ${nY-nY//4}, ${nX//10}) ) { % for i, w_i in enumerate(w): preshifted_f_a[${i*nCells}] = 1./24.f; preshifted_f_b[${i*nCells}] = 1./24.f; % endfor } else { % for i, w_i in enumerate(w): preshifted_f_a[${i*nCells}] = ${w_i}.f; preshifted_f_b[${i*nCells}] = ${w_i}.f; % endfor } } <% def direction_index(c_i): return (c_i[0]+1) + 3*(1-c_i[1]) def neighbor_offset(c_i): if c_i[1] == 0: return c_i[0] else: return c_i[1]*nX + c_i[0] %> __kernel void collide_and_stream(__global __write_only float* f_a, __global __read_only float* f_b, __global __read_only int* material) { const unsigned int gid = get_global_id(1)*${nX} + get_global_id(0); const int m = material[gid]; if ( m == 0 ) { return; } __global __write_only float* preshifted_f_a = f_a + gid; __global __read_only float* preshifted_f_b = f_b + gid; % for i, c_i in enumerate(c): const float f_curr_${i} = preshifted_f_b[${direction_index(c_i)*nCells + neighbor_offset(-c_i)}]; % endfor % for i, expr in enumerate(moments_helper): const float ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(moments_assignment): float ${ccode(expr)} % endfor if ( m == 2 ) { u_0 = 0.0; u_1 = 0.0; } % for i, expr in enumerate(collide_helper): const float ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(collide_assignment): const float ${ccode(expr)} % endfor % for i in range(0,len(c)): preshifted_f_a[${i*nCells}] = f_next_${i}; % endfor } __kernel void collect_moments(__global __read_only float* f, __global __write_only float* moments) { const unsigned int gid = get_global_id(1)*${nX} + get_global_id(0); __global __read_only float* preshifted_f = f + gid; % for i in range(0,len(c)): const float f_curr_${i} = preshifted_f[${i*nCells}]; % endfor % for i, expr in enumerate(moments_helper): const float ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(moments_assignment): moments[${i*nCells} + gid] = ${ccode(expr.rhs)}; % endfor }""" class D2Q9_BGK_Lattice: def idx(self, x, y): return y * self.nX + x; def __init__(self, nX, nY): self.nX = nX self.nY = nY self.nCells = nX * nY self.tick = True self.platform = cl.get_platforms()[0] self.context = cl.Context(properties=[(cl.context_properties.PLATFORM, self.platform)]) self.queue = cl.CommandQueue(self.context) self.np_moments = [] self.np_material = numpy.ndarray(shape=(self.nCells, 1), dtype=numpy.int32) self.setup_geometry() self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE, size=9*self.nCells*numpy.float32(0).nbytes) self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE, size=9*self.nCells*numpy.float32(0).nbytes) self.cl_moments = cl.Buffer(self.context, mf.WRITE_ONLY, size=3*self.nCells*numpy.float32(0).nbytes) self.cl_material = cl.Buffer(self.context, mf.READ_ONLY | mf.USE_HOST_PTR, hostbuf=self.np_material) self.build_kernel() self.program.equilibrilize(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_pop_b).wait() def setup_geometry(self): self.np_material[:] = 0 for x in range(1,self.nX-1): for y in range(1,self.nY-1): if x == 1 or y == 1 or x == self.nX-2 or y == self.nY-2: self.np_material[self.idx(x,y)] = 2 else: self.np_material[self.idx(x,y)] = 1 def build_kernel(self): program_src = Template(kernel).render( nX = self.nX, nY = self.nY, nCells = self.nCells, tau = '0.8f', moments_helper = D2Q9.moments_opt[0], moments_assignment = D2Q9.moments_opt[1], collide_helper = D2Q9.collide_opt[0], collide_assignment = D2Q9.collide_opt[1], c = D2Q9.c, w = D2Q9.w, ccode = sympy.ccode ) self.program = cl.Program(self.context, program_src).build() def collect_moments(self): moments = numpy.ndarray(shape=(3, self.nCells), dtype=numpy.float32) if self.tick: self.program.collect_moments(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_b, self.cl_moments) else: self.program.collect_moments(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_moments) cl.enqueue_copy(LBM.queue, moments, LBM.cl_moments).wait(); self.np_moments.append(moments) def evolve(self): if self.tick: self.tick = False self.program.collide_and_stream(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_pop_b, self.cl_material) else: self.tick = True self.program.collide_and_stream(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_b, self.cl_pop_a, self.cl_material) def sync(self): self.queue.finish() def generate_moment_plots(self): for i, moments in enumerate(self.np_moments): print("Generating plot %d of %d." % (i+1, len(self.np_moments))) density = numpy.ndarray(shape=(self.nY-2, self.nX-2)) for y in range(1,self.nY-1): for x in range(1,self.nX-1): density[y-1,x-1] = moments[0,self.idx(x,y)] plt.figure(figsize=(10, 10)) plt.imshow(density, origin='lower', vmin=0.2, vmax=2.0, cmap=plt.get_cmap('seismic')) plt.savefig("result/density_" + str(i) + ".png", bbox_inches='tight', pad_inches=0) self.np_moments = [] def MLUPS(cells, steps, time): return cells * steps / time * 1e-6 nUpdates = 1000 nStat = 100 print("Initializing simulation...\n") LBM = D2Q9_BGK_Lattice(1024, 1024) print("Starting simulation using %d cells...\n" % LBM.nCells) lastStat = time.time() for i in range(1,nUpdates+1): LBM.evolve() if i % nStat == 0: LBM.sync() print("i = %4d; %3.0f MLUPS" % (i, MLUPS(LBM.nCells, nStat, time.time() - lastStat))) LBM.collect_moments() lastStat = time.time() print("\nConcluded simulation.\n") LBM.generate_moment_plots()