import numpy import time import matplotlib import matplotlib.pyplot as plt matplotlib.use('AGG') from D2Q9 import Lattice def MLUPS(cells, steps, time): return cells * steps / time * 1e-6 def generate_moment_plots(lattice, moments): for i, m in enumerate(moments): print("Generating plot %d of %d." % (i+1, len(moments))) density = numpy.ndarray(shape=(lattice.nY-2, lattice.nX-2)) for y in range(1,lattice.nY-1): for x in range(1,lattice.nX-1): density[y-1,x-1] = m[0,lattice.idx(x,y)] plt.figure(figsize=(10, 10)) plt.imshow(density, origin='lower', vmin=0.2, vmax=2.0, cmap=plt.get_cmap('seismic')) plt.savefig("result/density_" + str(i) + ".png", bbox_inches='tight', pad_inches=0) def box(nX, nY, x, y): if x == 1 or y == 1 or x == nX-2 or y == nY-2: return 2 else: return 1 nUpdates = 1000 nStat = 100 moments = [] print("Initializing simulation...\n") lattice = Lattice(nX = 1024, nY = 1024, tau = 0.8, geometry = box) print("Starting simulation using %d cells...\n" % lattice.nCells) lastStat = time.time() for i in range(1,nUpdates+1): lattice.evolve() if i % nStat == 0: lattice.sync() print("i = %4d; %3.0f MLUPS" % (i, MLUPS(lattice.nCells, nStat, time.time() - lastStat))) moments.append(lattice.get_moments()) lastStat = time.time() print("\nConcluded simulation.\n") generate_moment_plots(lattice, moments)