import numpy import time import matplotlib matplotlib.use('AGG') import matplotlib.pyplot as plt from simulation import Lattice, Geometry from symbolic.generator import LBM import symbolic.D2Q9 as D2Q9 def MLUPS(cells, steps, time): return cells * steps / time * 1e-6 def generate_moment_plots(lattice, moments): for i, m in enumerate(moments): print("Generating plot %d of %d." % (i+1, len(moments))) velocity = numpy.ndarray(shape=tuple(reversed(lattice.geometry.inner_size()))) for x, y in lattice.geometry.inner_cells(): velocity[y-1,x-1] = numpy.sqrt(m[1,lattice.memory.gid(x,y)]**2 + m[2,lattice.memory.gid(x,y)]**2) plt.figure(figsize=(10, 10)) plt.imshow(velocity, origin='lower', cmap=plt.get_cmap('seismic')) plt.savefig("result/implosion_%02d.png" % i, bbox_inches='tight', pad_inches=0) def get_box_material_map(geometry): return [ (lambda x, y: x > 0 and x < geometry.size_x-1 and y > 0 and y < geometry.size_y-1, 1), # bulk fluid (lambda x, y: x == 1 or y == 1 or x == geometry.size_x-2 or y == geometry.size_y-2, 2), # walls (lambda x, y: x == 0 or x == geometry.size_x-1 or y == 0 or y == geometry.size_y-1, 0) # ghost cells ] pop_eq = """ if ( sqrt(pow(get_global_id(0) - ${geometry.size_x//2}.f, 2.f) + pow(get_global_id(1) - ${geometry.size_y//2}.f, 2.f)) < ${geometry.size_x//10} ) { % for i, w_i in enumerate(descriptor.w): preshifted_f_next[${i*geometry.volume}] = 1./24.f; preshifted_f_prev[${i*geometry.volume}] = 1./24.f; % endfor } else { % for i, w_i in enumerate(descriptor.w): preshifted_f_next[${i*geometry.volume}] = ${w_i}.f; preshifted_f_prev[${i*geometry.volume}] = ${w_i}.f; % endfor }""" boundary = """ if ( m == 2 ) { u_0 = 0.0; u_1 = 0.0; } """ nUpdates = 2000 nStat = 100 moments = [] print("Initializing simulation...\n") lbm = LBM(D2Q9) lattice = Lattice( descriptor = D2Q9, geometry = Geometry(1024, 1024), layout = (32,1), moments = lbm.moments(optimize = False), collide = lbm.bgk(f_eq = lbm.equilibrium(), tau = 0.8), pop_eq_src = pop_eq, boundary_src = boundary) lattice.apply_material_map( get_box_material_map(lattice.geometry)) lattice.sync_material() print("Starting simulation using %d cells...\n" % lattice.geometry.volume) lastStat = time.time() for i in range(1,nUpdates+1): lattice.evolve() if i % nStat == 0: lattice.sync() print("i = %4d; %3.0f MLUPS" % (i, MLUPS(lattice.geometry.volume, nStat, time.time() - lastStat))) moments.append(lattice.get_moments()) lastStat = time.time() print("\nConcluded simulation.\n") generate_moment_plots(lattice, moments)