import numpy import time import matplotlib import matplotlib.pyplot as plt matplotlib.use('AGG') from lbm import Lattice import symbolic.D2Q9 as D2Q9 def MLUPS(cells, steps, time): return cells * steps / time * 1e-6 def generate_moment_plots(lattice, moments): for i, m in enumerate(moments): print("Generating plot %d of %d." % (i+1, len(moments))) density = numpy.ndarray(shape=(lattice.nY-2, lattice.nX-2)) for y in range(1,lattice.nY-1): for x in range(1,lattice.nX-1): density[y-1,x-1] = m[0,lattice.idx(x,y)] plt.figure(figsize=(10, 10)) plt.imshow(density, origin='lower', vmin=0.2, vmax=2.0, cmap=plt.get_cmap('seismic')) plt.savefig("result/density_" + str(i) + ".png", bbox_inches='tight', pad_inches=0) def box(nX, nY, x, y): if x == 1 or y == 1 or x == nX-2 or y == nY-2: return 2 else: return 1 pop_eq = """ if ( sqrt(pow(get_global_id(0) - ${nX//2}.f, 2.f) + pow(get_global_id(1) - ${nY//2}.f, 2.f)) < ${nX//10} ) { % for i, w_i in enumerate(descriptor.w): preshifted_f_a[${i*nCells}] = 1./24.f; preshifted_f_b[${i*nCells}] = 1./24.f; % endfor } else { % for i, w_i in enumerate(descriptor.w): preshifted_f_a[${i*nCells}] = ${w_i}.f; preshifted_f_b[${i*nCells}] = ${w_i}.f; % endfor }""" boundary = """ if ( m == 2 ) { u_0 = 0.0; u_1 = 0.0; } """ nUpdates = 2000 nStat = 100 moments = [] print("Initializing simulation...\n") lattice = Lattice( descriptor = D2Q9, nX = 1024, nY = 1024, moments = D2Q9.moments(optimize = False), collide = D2Q9.bgk(tau = 0.8), geometry = box, pop_eq_src = pop_eq, boundary_src = boundary) print("Starting simulation using %d cells...\n" % lattice.nCells) lastStat = time.time() for i in range(1,nUpdates+1): lattice.evolve() if i % nStat == 0: lattice.sync() print("i = %4d; %3.0f MLUPS" % (i, MLUPS(lattice.nCells, nStat, time.time() - lastStat))) moments.append(lattice.get_moments()) lastStat = time.time() print("\nConcluded simulation.\n") generate_moment_plots(lattice, moments)