import numpy import time import matplotlib import matplotlib.pyplot as plt matplotlib.use('AGG') from D2Q9 import Lattice import symbolic.D2Q9 as D2Q9 def MLUPS(cells, steps, time): return cells * steps / time * 1e-6 def generate_moment_plots(lattice, moments): for i, m in enumerate(moments): print("Generating plot %d of %d." % (i+1, len(moments))) velocity = numpy.ndarray(shape=(lattice.nY-2, lattice.nX-2)) for y in range(1,lattice.nY-1): for x in range(1,lattice.nX-1): velocity[y-1,x-1] = numpy.sqrt(m[1,lattice.idx(x,y)]**2 + m[2,lattice.idx(x,y)]**2) plt.figure(figsize=(10, 10)) plt.imshow(velocity, origin='lower', cmap=plt.get_cmap('seismic')) plt.savefig("result/velocity_" + str(i) + ".png", bbox_inches='tight', pad_inches=0) def cavity(nX, nY, x, y): if x == 1 or y == 1 or x == nX-2: return 2 elif y == nY-2: return 3 else: return 1 boundary = """ if ( m == 2 ) { u_0 = 0.0; u_1 = 0.0; } if ( m == 3 ) { u_0 = 0.1; u_1 = 0.0; } """ nUpdates = 100000 nStat = 5000 moments = [] print("Initializing simulation...\n") lattice = Lattice( nX = 256, nY = 256, geometry = cavity, moments = D2Q9.moments(optimize = False), collide = D2Q9.bgk(tau = 0.56), boundary_src = boundary) print("Starting simulation using %d cells...\n" % lattice.nCells) lastStat = time.time() for i in range(1,nUpdates+1): lattice.evolve() if i % nStat == 0: lattice.sync() print("i = %4d; %3.0f MLUPS" % (i, MLUPS(lattice.nCells, nStat, time.time() - lastStat))) moments.append(lattice.get_moments()) lastStat = time.time() print("\nConcluded simulation.\n") generate_moment_plots(lattice, moments)