1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
#include <cstdint>
#include <memory>
#include <vector>
#include <chrono>
#include <iostream>
#include <fstream>
#include "kernel.h"
void collect_moments_to_vtk(const std::string& path, ${float_type}** f) {
std::ofstream fout;
fout.open(path.c_str());
fout << "# vtk DataFile Version 3.0\n";
fout << "lbm_output\n";
fout << "ASCII\n";
fout << "DATASET RECTILINEAR_GRID\n";
% if descriptor.d == 2:
fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " 1" << "\n";
% else:
fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " " << ${geometry.size_z-2} << "\n";
% endif
fout << "X_COORDINATES " << ${geometry.size_x-2} << " float\n";
for( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) {
fout << x << " ";
}
fout << "\nY_COORDINATES " << ${geometry.size_y-2} << " float\n";
for( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) {
fout << y << " ";
}
% if descriptor.d == 2:
fout << "\nZ_COORDINATES " << 1 << " float\n";
fout << 0 << "\n";
fout << "POINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2)} << "\n";
% else:
fout << "\nZ_COORDINATES " << ${geometry.size_z-2} << " float\n";
for( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) {
fout << z << " ";
}
fout << "\nPOINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2) * (geometry.size_z-2)} << "\n";
% endif
${float_type} rho;
${float_type} u[${descriptor.d}];
fout << "VECTORS velocity float\n";
% if descriptor.d == 2:
for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) {
for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) {
collect_moments(f, x*${geometry.size_y}+y, rho, u);
fout << u[0] << " " << u[1] << " 0\n";
}
}
% else:
for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) {
for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) {
for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) {
collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u);
fout << u[0] << " " << u[1] << " " << u[2] << "\n";
}
}
}
% endif
fout << "SCALARS density float 1\n";
fout << "LOOKUP_TABLE default\n";
% if descriptor.d == 2:
for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) {
for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) {
collect_moments(f, x*${geometry.size_y}+y, rho, u);
fout << rho << "\n";
}
}
% else:
for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) {
for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) {
for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) {
collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u);
fout << rho << "\n";
}
}
}
% endif
fout.close();
}
void simulate(std::size_t nStep)
{
<%
padding = (max(geometry.size_x,geometry.size_y,geometry.size_z)+1)**(descriptor.d-1)
%>
auto f_aa = std::make_unique<${float_type}[]>(${(geometry.volume+2*padding)*descriptor.q});
${float_type}* f[${descriptor.q}];
% for i, c_i in enumerate(descriptor.c):
f[${i}] = f_aa.get() + ${padding + layout.pop_offset(i, 2*padding)};
% endfor
std::vector<std::size_t> ghost;
std::vector<std::size_t> bulk;
std::vector<std::size_t> lid_bc;
std::vector<std::size_t> box_bc;
for (int iX = 0; iX < ${geometry.size_x}; ++iX) {
for (int iY = 0; iY < ${geometry.size_y}; ++iY) {
% if descriptor.d == 2:
const std::size_t iCell = iX*${geometry.size_y} + iY;
if (iX == 0 || iY == 0 || iX == ${geometry.size_x-1} || iY == ${geometry.size_y-1}) {
ghost.emplace_back(iCell);
} else if (iY == ${geometry.size_y-2}) {
lid_bc.emplace_back(iCell);
} else if (iX == 1 || iX == ${geometry.size_x-2} || iY == 1) {
box_bc.emplace_back(iCell);
} else {
bulk.emplace_back(iCell);
}
% elif descriptor.d == 3:
for (int iZ = 0; iZ < ${geometry.size_z}; ++iZ) {
const std::size_t iCell = iX*${geometry.size_y*geometry.size_z} + iY*${geometry.size_z} + iZ;
if ( iX == 0 || iY == 0 || iZ == 0
|| iX == ${geometry.size_x-1}
|| iY == ${geometry.size_y-1}
|| iZ == ${geometry.size_z-1}) {
ghost.emplace_back(iCell);
} else if (iZ == ${geometry.size_z-2}) {
lid_bc.emplace_back(iCell);
} else if ( iX == 1 || iX == ${geometry.size_x-2}
|| iY == 1 || iY == ${geometry.size_y-2}
|| iZ == 1) {
box_bc.emplace_back(iCell);
} else {
bulk.emplace_back(iCell);
}
}
% endif
}
}
std::cout << "#ghost : " << ghost.size() << std::endl;
std::cout << "#bulk : " << bulk.size() << std::endl;
std::cout << "#lid : " << lid_bc.size() << std::endl;
std::cout << "#wall : " << box_bc.size() << std::endl;
std::cout << std::endl;
#pragma omp parallel for
for (std::size_t iCell = 0; iCell < ${geometry.volume}; ++iCell) {
equilibrilize(f, iCell);
}
auto start = std::chrono::high_resolution_clock::now();
for (std::size_t iStep = 1; iStep <= nStep; ++iStep) {
#pragma omp parallel for
for (std::size_t i = 0; i < ghost.size(); ++i) {
equilibrilize(f, ghost[i]);
}
#pragma omp parallel for
for (std::size_t i = 0; i < bulk.size(); ++i) {
collide_and_stream(f, bulk[i]);
}
${float_type} u[${descriptor.d}] { 0. };
#pragma omp parallel for
for (std::size_t i = 0; i < box_bc.size(); ++i) {
velocity_momenta_boundary(f, box_bc[i], u);
}
u[0] = 0.05;
#pragma omp parallel for
for (std::size_t i = 0; i < lid_bc.size(); ++i) {
velocity_momenta_boundary(f, lid_bc[i], u);
}
if (iStep % 1000 == 0) {
auto duration = std::chrono::duration_cast<std::chrono::duration<double>>(
std::chrono::high_resolution_clock::now() - start);
std::cout << "iStep = " << iStep << "; ~" << 1000*${geometry.volume}/(1e6*duration.count()) << " MLUPS" << std::endl;
collect_moments_to_vtk("result/ldc_" + std::to_string(iStep) + ".vtk", f);
start = std::chrono::high_resolution_clock::now();
}
update_sss_control_structure(f);
}
}
int main() {
simulate(20000);
}
|