1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
static const std::string COLLIDE_SHADER_CODE = R"(
#version 430
layout (local_size_x = 1, local_size_y = 1) in;
layout (std430, binding=1) buffer bufferCollide{ float collideCells[]; };
layout (std430, binding=2) buffer bufferStream{ float streamCells[]; };
layout (std430, binding=3) buffer bufferFluid{ float fluidCells[]; };
/// external influence
uniform int mouseState;
uniform vec2 mousePos;
/// LBM constants
uniform uint nX;
uniform uint nY;
const uint q = 9;
const float weight[q] = float[](
1./36., 1./9., 1./36.,
1./9. , 4./9., 1./9. ,
1./36 , 1./9., 1./36.
);
const float tau = 0.8;
const float omega = 1/tau;
/// Vector utilities
float comp(int i, int j, vec2 v) {
return i*v.x + j*v.y;
}
float sq(float x) {
return x*x;
}
float norm(vec2 v) {
return sqrt(sq(v.x)+sq(v.y));
}
/// Array indexing
uint indexOfDirection(int i, int j) {
return 3*(j+1) + (i+1);
}
uint indexOfLatticeCell(uint x, uint y) {
return q*nX*y + q*x;
}
uint indexOfFluidVertex(uint x, uint y) {
return 3*nX*y + 3*x;
}
/// Data access
float w(int i, int j) {
return weight[indexOfDirection(i,j)];
}
float get(uint x, uint y, int i, int j) {
return collideCells[indexOfLatticeCell(x,y) + indexOfDirection(i,j)];
}
void set(uint x, uint y, int i, int j, float v) {
collideCells[indexOfLatticeCell(x,y) + indexOfDirection(i,j)] = v;
}
void setFluid(uint x, uint y, vec2 v, float d) {
const uint idx = indexOfFluidVertex(x, y);
fluidCells[idx + 0] = v.x;
fluidCells[idx + 1] = v.y;
fluidCells[idx + 2] = d;
}
/// Moments
float density(uint x, uint y) {
const uint idx = indexOfLatticeCell(x, y);
float d = 0.;
for ( int i = 0; i < q; ++i ) {
d += collideCells[idx + i];
}
return d;
}
vec2 velocity(uint x, uint y, float d) {
return 1./d * vec2(
get(x,y, 1, 0) - get(x,y,-1, 0) + get(x,y, 1, 1) - get(x,y,-1,-1) + get(x,y, 1,-1) - get(x,y,-1,1),
get(x,y, 0, 1) - get(x,y, 0,-1) + get(x,y, 1, 1) - get(x,y,-1,-1) - get(x,y, 1,-1) + get(x,y,-1,1)
);
}
/// Equilibrium distribution
float equilibrium(float d, vec2 v, int i, int j) {
return w(i,j) * d * (1 + 3*comp(i,j,v) + 4.5*sq(comp(i,j,v)) - 1.5*sq(norm(v)));
}
/// Determine external influence
float getExternalPressureInflux(uint x, uint y) {
if ( mouseState == 1 && norm(vec2(x,y) - mousePos) < 4 ) {
return 1.5;
} else {
return 0.0;
}
}
/// Actual collide kernel
void main() {
const uint x = gl_GlobalInvocationID.x;
const uint y = gl_GlobalInvocationID.y;
if ( !(x < nX && y < nY) ) {
return;
}
const float d = max(getExternalPressureInflux(x,y), density(x,y));
const vec2 v = velocity(x,y,d);
setFluid(x,y,v,d);
for ( int i = -1; i <= 1; ++i ) {
for ( int j = -1; j <= 1; ++j ) {
set(x,y,i,j, get(x,y,i,j) + omega * (equilibrium(d,v,i,j) - get(x,y,i,j)));
}
}
}
)";
|