aboutsummaryrefslogtreecommitdiff
path: root/src/main.cc
blob: 285d31fdda17367198ae8ed34aa89b081093c312 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#include <random>
#include <memory>
#include <algorithm>
#include <iostream>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include "glfw/guard.h"
#include "glfw/window.h"

#include "buffer/frame/texture_framebuffer.h"

#include "buffer/vertex/particle_vertex_buffer.h"
#include "buffer/vertex/texture_display_vertex_buffer.h"

#include "shader/wrap/graphic_shader.h"
#include "shader/wrap/compute_shader.h"

#include "shader/code/vertex.glsl"
#include "shader/code/fragment.glsl"
#include "shader/code/compute.glsl"

#include "shader/code/display_vertex.glsl"
#include "shader/code/display_fragment.glsl"

#include "timer.h"

float getWorldHeight(int window_width, int window_height, float world_width) {
	return world_width / window_width * window_height;
}

glm::mat4 getMVP(float world_width, float world_height) {
	const glm::mat4 projection = glm::ortho(
		-(world_width /2), world_width/2,
		-(world_height/2), world_height/2,
		0.1f, 100.0f
	);

	const glm::mat4 view = glm::lookAt(
		glm::vec3(0,0,1),
		glm::vec3(0,0,0),
		glm::vec3(0,1,0)
	);

	return projection * view;
}

std::vector<GLfloat> makeInitialParticles(std::size_t count, float world_width, float world_height) {
	std::vector<GLfloat> buffer;
	buffer.reserve(3*count);

	std::random_device rd;
	std::mt19937 gen(rd());
	std::uniform_real_distribution<GLfloat> distX(-world_width/2., world_width/2.);
	std::uniform_real_distribution<GLfloat> distY(-world_height/2., world_height/2.);
	std::uniform_real_distribution<GLfloat> distAge(0., 5.);

	for ( std::size_t i = 0; i < count; ++i ) {
		buffer.emplace_back(distX(gen));
		buffer.emplace_back(distY(gen));
		buffer.emplace_back(distAge(gen));
	}

	return buffer;
}

std::string getShaderFunction(const std::string& fx, const std::string& fy) {
	return COMPUTE_SHADER_CODE
	    + "vec2 f(vec2 v) {"
	    +     "return vec2(" + fx + "," + fy + ");"
	    + "}";
}

int renderVectorFieldWindow(
	const std::string& fx, const std::string& fy,
	const unsigned int particle_count = 5000,
	const unsigned int max_ups        = 100,
	const unsigned int texture_count  = 20) {
	Window window("computicle");

	if ( !window.isGood() ) {
		std::cerr << "Failed to open GLFW window." << std::endl;
		return -1;
	}

	int window_width  = window.getWidth();
	int window_height = window.getHeight();

	float world_width  = 10.0;
	float world_height = getWorldHeight(window_width, window_height, world_width);

	glm::mat4 MVP = getMVP(world_width,  world_height);

	std::vector<std::unique_ptr<TextureFramebuffer>> texture_framebuffers;

	std::unique_ptr<ParticleVertexBuffer> particle_buffer;
	std::unique_ptr<TextureDisplayVertexBuffer> display_buffer;

	std::unique_ptr<GraphicShader> scene_shader;
	std::unique_ptr<ComputeShader> compute_shader;
	std::unique_ptr<GraphicShader> display_shader;

	window.init([&]() {
		for ( unsigned int i = 0; i < texture_count; ++i ) {
			texture_framebuffers.emplace_back(
				new TextureFramebuffer(window_width, window_height));
		}

		particle_buffer = std::make_unique<ParticleVertexBuffer>(
			makeInitialParticles(particle_count, world_width, world_height));
		display_buffer  = std::make_unique<TextureDisplayVertexBuffer>();

		scene_shader = std::make_unique<GraphicShader>(
			VERTEX_SHADER_CODE, FRAGMENT_SHADER_CODE);

		compute_shader = std::make_unique<ComputeShader>(
			getShaderFunction(fx, fy));
		compute_shader->workOn(particle_buffer->getBuffer());

		display_shader = std::make_unique<GraphicShader>(
			DISPLAY_VERTEX_SHADER_CODE, DISPLAY_FRAGMENT_SHADER_CODE);
	});

	if ( std::any_of(texture_framebuffers.cbegin(), texture_framebuffers.cend(),
		[](auto& texture_framebuffer) -> bool {
			return !texture_framebuffer->isGood();
		}) ) {
		std::cerr << "Texture framebuffer error" << std::endl;
		return -1;
	}

	if ( !compute_shader->isGood() ) {
		std::cerr << "Compute shader error. Check vector field definition." << std::endl;
		return -1;
	}

	auto last_frame  = timer::now();
	auto last_rotate = timer::now();

	bool just_rotated     = true;
	bool update_particles = true;

	std::vector<GLuint> textures;
	for ( const auto& texture_buffer : texture_framebuffers ) {
		textures.emplace_back(texture_buffer->getTexture());
	}

	auto pause_key = window.getKeyWatcher(GLFW_KEY_SPACE);

	window.render([&]() {
		if ( pause_key.wasClicked() ) {
			update_particles = !update_particles;
		}

		if (    window.getWidth()  != window_width
		     || window.getHeight() != window_height ) {
			window_width  = window.getWidth();
			window_height = window.getHeight();
			world_height  = getWorldHeight(window_width, window_height, world_width);

			MVP = getMVP(world_width, world_height);

			for ( auto& texture_buffer : texture_framebuffers ) {
				texture_buffer->resize(window_width, window_height);
			}
		}

		if ( update_particles ) {
			if ( timer::millisecondsSince(last_frame) >= 1000/max_ups ) {
				auto guard = compute_shader->use();

				compute_shader->setUniform("world", world_width, world_height);
				compute_shader->dispatch(particle_count);

				last_frame = timer::now();
			}

			if ( timer::millisecondsSince(last_rotate) >= 1000/10 ) {
				std::rotate(textures.begin(), textures.end()-1, textures.end());
				std::rotate(texture_framebuffers.begin(), texture_framebuffers.end()-1, texture_framebuffers.end());
				just_rotated = true;

				last_rotate = timer::now();
			}

			{
				auto texGuard = texture_framebuffers[0]->use();
				auto sdrGuard = scene_shader->use();

				scene_shader->setUniform("MVP", MVP);

				if ( just_rotated ) {
					glClear(GL_COLOR_BUFFER_BIT);
					just_rotated = false;
				}

				particle_buffer->draw();
			}
		}

		{
			auto guard = display_shader->use();

			display_shader->setUniform("screen_textures",      textures);
			display_shader->setUniform("screen_textures_size", textures.size());

			glClear(GL_COLOR_BUFFER_BIT);

			display_buffer->draw(textures);
		}
	});

	return 0;
}

int main(int argc, char* argv[]) {
	GlfwGuard glfw;

	if( !glfw.isGood() ) {
		std::cerr << "Failed to initialize GLFW." << std::endl;
		return -1;
	}

	const std::vector<std::string> args(&argv[0], &argv[0 + argc]);

	if ( argc == 3 ) {
		return renderVectorFieldWindow(args[1], args[2]);
	} else {
		return renderVectorFieldWindow("cos(v.x*sin(v.y))",
		                               "sin(v.x-v.y)");
	}
}