1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2014 Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* cavity3d.cpp:
* This example illustrates a flow in a cuboid, lid-driven cavity.
* This version is for parallel use. A version for sequential use
* is also available.
*/
#include "olb3D.h"
#ifndef OLB_PRECOMPILED // Unless precompiled version is used,
#include "olb3D.hh" // include full template code
#endif
#include <cmath>
#include <iostream>
#include <fstream>
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace olb::util;
using namespace std;
typedef double T;
#define DESCRIPTOR D3Q19<>
const int N = 30; // resolution of the model
//const int M = 1; // time discretization refinement
const T maxT = (T) 100.; // max. simulation time in s, SI unit
const T interval = 1.0; // Time intervall in seconds for convergence check
const T epsilon = 1e-3; // Residuum for convergence check
void prepareGeometry( UnitConverter<T, DESCRIPTOR> const& converter, IndicatorF3D<T>& indicator, SuperGeometry3D<T>& superGeometry ) {
OstreamManager clout( std::cout,"prepareGeometry" );
clout << "Prepare Geometry ..." << std::endl;
// Sets material number for fluid and boundary
superGeometry.rename( 0,2,indicator );
superGeometry.rename( 2,1,1,1,1 );
T eps = converter.getConversionFactorLength();
Vector<T,3> origin( -eps, converter.getCharPhysLength() - eps, -eps );
Vector<T,3> extend( converter.getCharPhysLength() + 2*eps, 2*eps, converter.getCharPhysLength() + 2*eps );
IndicatorCuboid3D<T> lid( extend,origin );
superGeometry.rename( 2,3,1,lid );
// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice( UnitConverter<T, DESCRIPTOR> const& converter,
SuperLattice3D<T,DESCRIPTOR>& lattice,
Dynamics<T, DESCRIPTOR>& bulkDynamics,
sOnLatticeBoundaryCondition3D<T,DESCRIPTOR>& bc,
SuperGeometry3D<T>& superGeometry ) {
OstreamManager clout( std::cout,"prepareLattice" );
clout << "Prepare Lattice ..." << std::endl;
const T omega = converter.getLatticeRelaxationFrequency();
// Material=0 -->do nothing
lattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
// Material=1 -->bulk dynamics
lattice.defineDynamics( superGeometry, 1, &bulkDynamics );
// Material=2,3 -->bulk dynamics, velocity boundary
lattice.defineDynamics( superGeometry, 2, &bulkDynamics );
lattice.defineDynamics( superGeometry, 3, &bulkDynamics );
bc.addVelocityBoundary( superGeometry, 2, omega );
bc.addVelocityBoundary( superGeometry, 3, omega );
clout << "Prepare Lattice ... OK" << std::endl;
}
void setBoundaryValues( UnitConverter<T, DESCRIPTOR> const& converter,
SuperLattice3D<T,DESCRIPTOR>& lattice, SuperGeometry3D<T>& superGeometry, int iT ) {
OstreamManager clout( std::cout,"setBoundaryValues" );
if ( iT==0 ) {
AnalyticalConst3D<T,T> rhoF( T( 1 ) );
AnalyticalConst3D<T,T> uF( T( 0 ), T( 0 ), T( 0 ) );
auto bulkIndicator = superGeometry.getMaterialIndicator({1, 2, 3});
lattice.iniEquilibrium( bulkIndicator, rhoF, uF );
lattice.defineRhoU( bulkIndicator, rhoF, uF );
clout << converter.getCharLatticeVelocity() << std::endl;
AnalyticalConst3D<T,T> uTop( converter.getCharLatticeVelocity(), T( 0 ), T( 0 ) );
lattice.defineU( superGeometry,3,uTop );
// Make the lattice ready for simulation
lattice.initialize();
}
}
void getResults( SuperLattice3D<T,DESCRIPTOR>& sLattice,
UnitConverter<T, DESCRIPTOR> const& converter, SuperGeometry3D<T>& superGeometry,
int iT, Timer<T>& timer, bool converged ) {
OstreamManager clout( std::cout,"getResults" );
SuperVTMwriter3D<T> vtmWriter( "cavity3d" );
const T logT = ( T )1.;
const T vtkSave = ( T )1.;
const T imSave = ( T )5.;
if ( iT==0 ) {
SuperLatticeGeometry3D<T, DESCRIPTOR> geometry( sLattice, superGeometry );
SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid( sLattice );
SuperLatticeRank3D<T, DESCRIPTOR> rank( sLattice );
vtmWriter.write( geometry );
vtmWriter.write( cuboid );
vtmWriter.write( rank );
vtmWriter.createMasterFile();
}
// Get statistics
if ( (iT%converter.getLatticeTime( logT )==0 && iT>0) || converged ) {
timer.update( iT );
timer.printStep( 2 );
sLattice.getStatistics().print( iT,converter.getPhysTime( iT ) );
}
// Writes the VTK
if ( (iT%converter.getLatticeTime( vtkSave )==0 && iT>0) || converged ) {
SuperLatticePhysVelocity3D<T, DESCRIPTOR> velocity( sLattice, converter );
SuperLatticePhysPressure3D<T, DESCRIPTOR> pressure( sLattice, converter );
vtmWriter.addFunctor( velocity );
vtmWriter.addFunctor( pressure );
vtmWriter.write( iT );
}
// Writes the JPEG files
if ( (iT%converter.getLatticeTime( imSave )==0 && iT>0) || converged ) {
SuperLatticePhysVelocity3D<T, DESCRIPTOR> velocity( sLattice, converter );
// define vector which span the plane
Vector<T,3> u( 1,0,0 );
Vector<T,3> v( 0,1,0 );
T tmp = T( converter.getCharPhysLength() / 2. );
T origin[3] = {tmp,tmp,tmp};
SuperEuklidNorm3D<T, DESCRIPTOR> normVel( velocity );
BlockReduction3D2D<T> planeReduction( normVel, origin, u, v, 600 );
// write a heatmap
heatmap::plotParam<T> plotParam;
plotParam.maxValue = 1.;
plotParam.name = "velocity";
heatmap::write(planeReduction, iT, plotParam);
}
}
int main( int argc, char **argv ) {
// === 1st Step: Initialization ===
olbInit( &argc, &argv );
singleton::directories().setOutputDir( "./tmp/" );
OstreamManager clout( std::cout,"main" );
UnitConverterFromResolutionAndRelaxationTime<T, DESCRIPTOR> const converter(
int {N}, // resolution: number of voxels per charPhysL
(T) 0.509, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
(T) 1.0, // charPhysLength: reference length of simulation geometry
(T) 1.0, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
(T) 0.001, // physViscosity: physical kinematic viscosity in __m^2 / s__
(T) 1.0 // physDensity: physical density in __kg / m^3__
);
// Prints the converter log as console output
converter.print();
// Writes the converter log in a file
converter.write("cavity3d");
// === 2nd Step: Prepare Geometry ===
// Instantiation of a unit cube by an indicator
Vector<T,3> origin( T( 0 ) );
Vector<T,3> extend( converter.getCharPhysLength() );
IndicatorCuboid3D<T> cube( extend,origin );
// Instantiation of a cuboid geometry with weights
int noCuboids = singleton::mpi().getSize();
if ( noCuboids < 7
|