1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
/* dkt2d.cpp:
* The case examines the settling of two circles under gravity
* in a surrounding fluid. The rectangular domain is limited
* by no-slip boundary conditions.
* For the calculation of forces a DNS approach is chosen
* which also leads to a back-coupling of the particle on the fluid,
* inducing a flow.
* The simulation is based on the homogenised lattice Boltzmann approach
* (HLBM) introduced by Krause et al. in "Particle flow simulations
* with homogenised lattice Boltzmann methods".
* The drafting-kissing-tumbling benchmark case is e.g. described
* in "Drafting, kissing and tumbling process of two particles
* with different sizes" by Wang et al.
* or "The immersed boundary-lattice Boltzmann method
* for solving fluid-particles interaction problems" by Feng and Michaelides.
* The example demonstrates the usage of HLBM in the OpenLB framework
* as well as the utilisation of the Gnuplot-writer
* to print simulation results.
*/
#include "olb2D.h"
#include "olb2D.hh" // include full template code
#include <vector>
#include <cmath>
#include <iostream>
#include <fstream>
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace olb::util;
using namespace std;
typedef double T;
#define DESCRIPTOR D2Q9<POROSITY,VELOCITY_NUMERATOR,VELOCITY_DENOMINATOR>
#define WriteVTK
#define WriteGnuPlot
std::string gnuplotFilename = "gnuplot.dat";
// Parameters for the simulation setup
int N = 1;
int M = N;
T eps = 0.5; // eps*latticeL: width of transition area
T maxPhysT = 6.; // max. simulation time in s, SI unit
T iTwrite = 0.125; //converter.getLatticeTime(.3);
T lengthX = 0.02;
T lengthY = 0.08;
T centerX1 = 0.01;
T centerY1 = 0.068;
Vector<T,2> center1 = {centerX1,centerY1};
T centerX2 = 0.00999;
T centerY2 = 0.072;
Vector<T,2> center2 = {centerX2,centerY2};
T rhoP = 1010.;
T radiusP = 0.001;
Vector<T,2> accExt = {.0, -9.81 * (1. - 1000. / rhoP)};
void prepareGeometry(UnitConverter<T,DESCRIPTOR> const& converter,
SuperGeometry2D<T>& superGeometry)
{
OstreamManager clout(std::cout, "prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0, 2);
superGeometry.rename(2, 1, 1, 1);
superGeometry.clean();
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.getStatistics().print();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice(
SuperLattice2D<T, DESCRIPTOR>& sLattice, UnitConverter<T,DESCRIPTOR> const& converter,
Dynamics<T, DESCRIPTOR>& designDynamics,
sOnLatticeBoundaryCondition2D<T, DESCRIPTOR>& sBoundaryCondition,
SuperGeometry2D<T>& superGeometry)
{
OstreamManager clout(std::cout, "prepareLattice");
clout << "Prepare Lattice ..." << std::endl;
/// Material=0 -->do nothing
sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>());
sLattice.defineDynamics(superGeometry, 1, &designDynamics);
sLattice.defineDynamics(superGeometry, 2, &instances::getBounceBack<T, DESCRIPTOR>());
clout << "Prepare Lattice ... OK" << std::endl;
}
void setBoundaryValues(SuperLattice2D<T, DESCRIPTOR>& sLattice,
UnitConverter<T,DESCRIPTOR> const& converter,
SuperGeometry2D<T>& superGeometry)
{
OstreamManager clout(std::cout, "setBoundaryValues");
AnalyticalConst2D<T, T> one(1.);
sLattice.defineField<POROSITY>(superGeometry.getMaterialIndicator({1,2}), one);
// Set initial condition
AnalyticalConst2D<T, T> ux(0.);
AnalyticalConst2D<T, T> uy(0.);
AnalyticalConst2D<T, T> rho(1.);
AnalyticalComposed2D<T, T> u(ux, uy);
//Initialize all values of distribution functions to their local equilibrium
sLattice.defineRhoU(superGeometry, 1, rho, u);
sLattice.iniEquilibrium(superGeometry, 1, rho, u);
// Make the lattice ready for simulation
sLattice.initialize();
}
void getResults(SuperLattice2D<T, DESCRIPTOR>& sLattice,
UnitConverter<T,DESCRIPTOR> const& converter, int iT,
SuperGeometry2D<T>& superGeometry, Timer<double>& timer, SmoothIndicatorF2D<T,T,true> &particle1, SmoothIndicatorF2D<T,T,true> &particle2)
{
OstreamManager clout(std::cout, "getResults");
#ifdef WriteVTK
SuperVTMwriter2D<T> vtkWriter("sedimentation");
SuperLatticePhysVelocity2D<T, DESCRIPTOR> velocity(sLattice, converter);
SuperLatticePhysPressure2D<T, DESCRIPTOR> pressure(sLattice, converter);
SuperLatticePhysExternalPorosity2D<T, DESCRIPTOR> externalPor(sLattice, converter);
vtkWriter.addFunctor(velocity);
vtkWriter.addFunctor(pressure);
vtkWriter.addFunctor(externalPor);
if (iT == 0) {
converter.write("dkt");
SuperLatticeGeometry2D<T, DESCRIPTOR> geometry(sLattice, superGeometry);
SuperLatticeCuboid2D<T, DESCRIPTOR> cuboid(sLattice);
SuperLatticeRank2D<T, DESCRIPTOR> rank(sLattice);
vtkWriter.write(geometry);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
if (iT % converter.getLatticeTime(iTwrite) == 0) {
vtkWriter.write(iT);
}
#endif
#ifdef WriteGnuPlot
if (iT % converter.getLatticeTime(iTwrite) == 0) {
if (singleton::mpi().getRank() == 0) {
ofstream myfile;
myfile.open (gnuplotFilename.c_str(), ios::app);
myfile
<< converter.getPhysTime(iT) << " "
<< std::setprecision(9)
<< particle2.getPos()[1] << " "
<< particle1.getPos()[1] << " "
<< particle2.getPos()[0] << " "
<< particle1.getPos()[0] << endl;
myfile.close();
}
}
#endif
/// Writes output on the console
if (iT % converter.getLatticeTime(iTwrite) == 0) {
timer.update(iT);
timer.printStep();
sLattice.getStatistics().print(iT, converter.getPhysTime(iT));
}
return;
}
int main(int argc, char* argv[])
{
/// === 1st Step: Initialization ===
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
OstreamManager clout(std::cout, "main");
UnitConverter<T,DESCRIPTOR> converter(
( T ) 0.0001/ N, //physDeltaX
( T ) 5.e-4/(N*M), //physDeltaT,
( T ) .002, //charPhysLength
( T ) 0.2, //charPhysVelocity
( T ) 1E-6, //physViscosity
( T ) 1000. //physDensity
);
converter.print();
/// === 2nd Step: Prepare Geometry ===
std::vector<T> extend(2, T());
extend[0] = lengthX;
extend[1] = lengthY;
std::vector<T> origin(2, T());
IndicatorCuboid2D<T> cuboid(extend, origin);
#ifdef PARALLEL_MODE_MPI
CuboidGeometry2D<T> cuboidGeometry(cuboid, converter.getConversionFactorLength(), singleton::mpi().getSize());
#else
CuboidGeometry2D<T> cuboidGeometry(cuboid, converter.getConversionFactorLength(), 1);
#endif
HeuristicLoadBalancer<T> loadBalancer(cuboidGeometry);
SuperGeometry2D<T> superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(converter, superGeometry);
/// === 3rd Step: Prepare Lattice ===
SuperLattice2D<T, DESCRIPTOR> sLattice(superGeometry);
PorousParticleBGKdynamics<T, DESCRIPTOR> designDynamics(converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta<T, DESCRIPTOR>());
sOnLatticeBoundaryCondition2D<T, DESCRIPTOR> sBoundaryCondition(sLattice);
createLocalBoundaryCondition2D<T, DESCRIPTOR>(sBoundaryCondition);
prepareLattice(sLattice, converter, designDynamics, sBoundaryCondition, superGeometry);
/// === 4th Step: Main Loop with Timer ===
Timer<double> timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel());
timer.start();
ParticleDynamics2D<T, DESCRIPTOR> particle(sLattice, converter, superGeometry, lengthX, lengthY, accExt);
SmoothIndicatorCircle2D<T,T,true> circle2(center1, radiusP, eps*converter.getConversionFactorLength(), rhoP);
SmoothIndicatorCircle2D<T,T,true> circle1(center2, radiusP, eps*converter.getConversionFactorLength(), rhoP);
particle.addParticle(circle2);
particle.addParticle(circle1);
SuperE
|