1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
\section*{Basics}
A \emph{graph} $G$ is a tuple $(V,E)$ where $V$ is a finite set of vertices and $E \subset {V \choose 2}$ is the set of edges.
\spacing
A \emph{multigraph} $G$ is a tuple $(V,E)$ where $V$ is a set of vertices and $E$ is a multiset of elements from ${V \choose 1} \cup {V \choose 2}$ i.e. multiedges and loops.
\spacing
A \emph{hypergraph} $H$ is a tuple $(X,E)$ where $X$ is a finite set and $E \subseteq 2^X \setminus \{\emptyset\}$.
i.e. edges may join any number of vertices.
\subsection*{Notation of special graphs}
$K_n$ is the complete graph on $n$ vertices.
$C_n$ is the cycle on $n$ vertices.
$P_n$ is a path of length $n$ where $n$ counts edges.
$E_n$ is the empty i.e. edge-less graph on $n$ vertices.
$K_{m,n}$ is the complete bipartite graph with partite sets of cardinality $m$ respectively $n$.
\subsection*{Local properties}
$N(v)$ for $v \in V(G)$ is the \emph{neighbourhood} of $v$.
$d(v)$ for $v \in V(G)$ is the \emph{degree} of $v$.
$d(u,v)$ is the length of a shortest $u$-$v$-path.
\subsection*{Global properties}
$|G| := |V(G)|$ and $\|G\| := |E(G)|$
$\delta(G)$ is the minimum degree in $G$.
$\Delta(G)$ is the maximum degree in $G$.
\spacing
$G$ is $k$-regular $\iff \forall v \in V(G) : d(v) = k$
The \emph{girth} $g(G)$ is the length of a shortest cycle.
The length of a longest cycle is $G$'s \emph{circumference}.
\spacing
$\text{diam}(G) := \displaystyle\max_{u,v \in V(G)} d(u,v)$ is the \emph{diameter} of $G$.
\spacing
$\text{rad}(G) := \displaystyle\min_{u \in V(G)} \max_{v \in V(G)} d(u,v)$ is the \emph{radius} of $G$.
\subsection*{Handshake Lemma}
\[ 2|E| = \sum_{v \in V} d(v) \]
Furthermore the sum of all degrees is even and thus \#vertices with odd degree is also even.
\subsection*{Induced Subgraphs}
Subgraph $H \subset G$ is \emph{induced} if:
$\forall u, v \in V(H) : uv \in E(H) \iff uv \in E(G)$
i.e. every induced subgraph may be generated by deleting vertices and their incident edges from $G$.
\subsection*{Bipartite Charaterization}
$G$ is \emph{bipartite} iff it has no cycles of odd length.
\subsection*{Hamiltonian Cycles}
A \emph{Hamiltonian cycle} is a cycle that visits each vertex of $G$ exactly once.
Correspondingly a \emph{Hamiltonian path} is a path that visits each vertex of $G$ exactly once.
\subsubsection*{Dirac Theorem}
Every graph $G$ with $|V(G)| \geq 3$ and $\delta(G) \geq \frac{n}{2}$ has a Hamiltonian cycle.
\subsection*{Eulerian Tour Condition}
An \emph{Eulerian tour} is closed walk containing all edges of $G$ exactly once.
\spacing
A connected graph has an Eulerian tour iff every vertex has even degree.
\subsection*{Hall's Marriage Theorem}
Bipartite $G$ with partite sets $A, B$ has a matching containing $A$ iff $\forall S \subset A : |N(S)|\geq|S|$.
\subsection*{Tutte's Theorem}
Let $q(G)$ be the number of odd components in $G$.
$G$ has perfect matching iff $\forall S \subseteq V : q(G-S) \leq |S|$.
\spacing
Any $k$-regular bipartite graph has a perfect matching and a proper $k$-edge coloring.
\subsection*{König's Theorem}
For bipartite $G$ the size of the largest matching equals the size of a smallest vertex cover.
\subsection*{Hajnal and Szemer\'{e}di}
Let $H, G$ be graphs. An \emph{$H$-factor} of $G$ is a spanning subgraph that is a set of disjoint copies of $H$ in $G$ whose vertex sets form a partition of $V(G)$.
\spacing
$\delta(G) \geq (1-\frac{1}{k})n$ for $k | n \implies G$ has a $K_k$-factor.
\section*{Connectivity}
Let $\kappa(G)$ be the \emph{connectivity} of $G$
i.e. the maximum $k$ for which $G$ is \emph{$k$-connected}.
$G$ is $k$-connected if $k-1$ vertices can be removed without disconnecting.
Let $\kappa'(G)$ be the edge-connectivity of $G$:
\vspace*{-3mm}
\[ \kappa(G) \leq \kappa'(G) \leq \delta(G) \]
\subsection*{Menger's Theorem}
For $A,B \subseteq V(G)$ the min \#vertices separating $A, B$ equals the max number of disjoint $A$-$B$-paths.
For $a, b \in V(G)$ s.t. $\{a,b\} \notin E(G)$ the minimum number of $v \in V(G)\setminus\{a,b\}$ separating $a, b$ equals the maximum number of independent $a$-$b$-paths.
\subsubsection*{Global Menger's Theorem}
Graph $G$ is $k$-connected iff $\forall a,b \in V(G)$ there exist $k$ independent $a$-$b$-paths.
\subsection*{Ear-decomposition}
Ear-decomposition of $G$ is a sequence of graphs $G_0 \subseteq G_1 \subseteq \cdots \subseteq G_k$ s.t. $G_0$ is a cycle, $G_i$ results from $G_{i-1}$ by adding an ear and $G_k = G$.
$G$ is $2$-connected iff it has an ear-decomposition.
\subsection*{Block-cut-vertex-graph}
Blocks of $G$ are the maximal $2$-connected subgraphs and bridges.
The \emph{block-cut-vertex-graph} of $G$ is the bipartite graph s.t. its partite sets are the blocks on the one side and the cut-vertices on the other side.
Block-cut-vertex-graph of connected $G$ is a tree.
\section*{Planar Graphs}
Let a \emph{plane graph} be a set of points on the plane connected by arcs s.t. the arcs do not contain any of the points or intersect any other arc.
A \emph{planar embedding} is a bijection between a plane graph and a abstract graph.
A \emph{planar graph} is a graph $G$ with a planar embedding. The corresponding plane graph is a drawing of $G$.
\subsection*{F\'{a}ry's Theorem}
Every planar graph can be embedded in a plane s.t. the edges are straight lines.
\subsection*{Euler's Formula}
For connected planar $G$ with $v$ vertices, $e$ edges and $f$ faces: $v-e+f=2$
\spacing
$|E(G)| \leq 3|V(G)|-6$ (equal if $G$ is triangulation)
$|E(G)| \leq 2|V(G)|-4$ if no face is bound by triangle.
\subsection*{Tutte's Theorem}
Every $4$-connected planar graph is Hamiltonian.
\subsection*{Graph minors}
$H$ is \emph{minor} of $G$ (i.e. $MH \subseteq G$) if it can be generated from $G$ by deleting vertices, deleting or contracting edges.
$H$ is a \emph{subdivision} of $G$ if it can be generated from $G$ by subdividing edges.
$H$ is a \emph{topological minor} of $G$ (i.e. $TH \subseteq G$) if a subgraph of $G$ is a subdivision of $H$.
\subsubsection*{Kuratowski's Theorem}
For graph $G$ the following is equivalent:
\begin{enumerate}[label=(\alph*)]
\item $G$ is planar
\item $K_5, K_{3,3}$ aren't minors of $G$
\item $K_5$, $K_{3,3}$ aren't topological minors of $G$
\end{enumerate}
\section*{Colorings}
The \emph{chromatic number} $\chi(G)$ and the \emph{chromatic index} $\chi'(G)$ are defined as follows:
\vspace*{-4mm}
\begin{align*}
\chi(G) :&= \min_{k \in \N} : G \text{ has proper $k$-vertex coloring} \\
\chi'(G) :&= \min_{k \in \N} : G \text{ has proper $k$-edge coloring}
\end{align*}
$k$-regular bipartite $G$ has proper $k$-edge-coloring.
\subsection*{Cliques}
A \emph{clique} is a subgraph of $G$ that is a complete graph.
The \emph{clique number} $\omega(G)$ is the maximum order of a clique in $G$.
The \emph{co-clique number} $\alpha(G)$ is the largest order of an independent set in $G$.
\spacing
$G$ is \emph{perfect} if $\forall$ induced $H \subseteq G : \chi(H) = \omega(H)$.
Bipartite graphs are perfect with $\chi = \omega = 2$.
\subsection*{$5$-Color Theorem}
Every planar graph is $5$-colorable.
\subsection*{List coloring}
$\forall v \in V(G)$ let $L(v) \subseteq \N$ be a list of colors.
$G$ is \emph{$L$-list-colorable} if $\exists$ a proper coloring $c$ s.t. $\forall v \in V(G) : c(v) \in L(v)$.
\spacing
$G$ is \emph{$k$-list-colorable} or \emph{$k$-choosable} if it is $L$-list-colorable for all lists of $k$ colors.
\spacing
\emph{Choosability} $ch(G) := \min_{k\in\N}\{ G$ is $k$-choosable$\}$
\subsubsection*{Thomassen's $5$-List-Color Theorem}
Every planar graph is $5$-choosable.
\subsection*{Greedy chromatic number estimate}
\[ \chi(G) \leq \Delta(G)+1 \]
\subsection*{Brook's Theorem}
If $G$ is connected and neither complete nor an odd cycle then $\chi(G) \leq \Delta(G)$
\subsection*{König's Theorem}
\[ G \text{ bipartite} \implies \chi'(G) = \Delta(G) \]
\subsection*{Vizing's Theorem}
\[ \chi'(G) \in \{\Delta(G), \Delta(G)+1\} \]
\section*{Extremal Graph Theory}
For $n \in \N$ and graph $H$ the \emph{extremal number} $ex(n,H)$ is the max number of edges in a graph of order $n$ s.t. it doesn't contain subgraph $H$.
\vspace*{-3mm}
\[ ex
|