diff options
Diffstat (limited to 'ldc_2d/opencl/simulation.py')
-rw-r--r-- | ldc_2d/opencl/simulation.py | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/ldc_2d/opencl/simulation.py b/ldc_2d/opencl/simulation.py new file mode 100644 index 0000000..7625609 --- /dev/null +++ b/ldc_2d/opencl/simulation.py @@ -0,0 +1,105 @@ +import pyopencl as cl +mf = cl.mem_flags + +import numpy + +class Memory: + def __init__(self, descriptor, geometry, context, float_type): + self.context = context + self.float_type = float_type + + self.size_x = geometry.size_x + self.size_y = geometry.size_y + self.size_z = geometry.size_z + self.volume = self.size_x * self.size_y * self.size_z + + self.pop_size = descriptor.q * self.volume * self.float_type(0).nbytes + self.moments_size = 3 * self.volume * self.float_type(0).nbytes + + self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE, size=self.pop_size) + self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE, size=self.pop_size) + + self.cl_moments = cl.Buffer(self.context, mf.WRITE_ONLY, size=self.moments_size) + + def gid(self, x, y, z = 0): + return z * (self.size_x*self.size_y) + y * self.size_x + x; + +class CellList: + def __init__(self, context, queue, float_type, cells): + self.cl_cells = cl.Buffer(context, mf.READ_ONLY, size=len(cells) * numpy.uint32(0).nbytes) + self.np_cells = numpy.ndarray(shape=(len(cells), 1), dtype=numpy.uint32) + self.np_cells[:,0] = cells[:] + + cl.enqueue_copy(queue, self.cl_cells, self.np_cells).wait(); + + def get(self): + return self.cl_cells + + def size(self): + return (len(self.np_cells), 1, 1) + +class Lattice: + def __init__(self, geometry, kernel_src, descriptor, platform = 0, precision = 'single'): + self.geometry = geometry + self.descriptor = descriptor + + self.float_type = { + 'single': (numpy.float32, 'float'), + 'double': (numpy.float64, 'double'), + }.get(precision, None) + + self.platform = cl.get_platforms()[platform] + self.layout = None + + self.context = cl.Context( + properties=[(cl.context_properties.PLATFORM, self.platform)]) + + self.queue = cl.CommandQueue(self.context) + + self.memory = Memory(descriptor, self.geometry, self.context, self.float_type[0]) + self.tick = False + + self.compiler_args = { + 'single': '-cl-single-precision-constant -cl-fast-relaxed-math', + 'double': '-cl-fast-relaxed-math' + }.get(precision, None) + + self.build_kernel(kernel_src) + + self.program.equilibrilize( + self.queue, self.geometry.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_pop_b).wait() + + self.tasks = [] + + def build_kernel(self, src): + self.program = cl.Program(self.context, src).build(self.compiler_args) + + def schedule(self, f, cells, *params): + self.tasks += [ (eval("self.program.%s" % f), cells, params) ] + + def evolve(self): + if self.tick: + self.tick = False + for f, cells, params in self.tasks: + f(self.queue, cells.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_pop_b, cells.get(), *params) + else: + self.tick = True + for f, cells, params in self.tasks: + f(self.queue, cells.size(), self.layout, self.memory.cl_pop_b, self.memory.cl_pop_a, cells.get(), *params) + + def sync(self): + self.queue.finish() + + def get_moments(self): + moments = numpy.ndarray(shape=(self.memory.volume*(self.descriptor.d+1),1), dtype=self.float_type[0]) + + if self.tick: + self.program.collect_moments( + self.queue, self.geometry.size(), self.layout, self.memory.cl_pop_b, self.memory.cl_moments) + else: + self.program.collect_moments( + self.queue, self.geometry.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_moments) + + cl.enqueue_copy(self.queue, moments, self.memory.cl_moments).wait(); + + return moments |