summaryrefslogtreecommitdiff
path: root/apps/adrian/cylinder2d/outflow_refinement
diff options
context:
space:
mode:
Diffstat (limited to 'apps/adrian/cylinder2d/outflow_refinement')
-rw-r--r--apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp259
1 files changed, 33 insertions, 226 deletions
diff --git a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp
index f1e6fa9..5a6725b 100644
--- a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp
+++ b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp
@@ -28,8 +28,6 @@
#include "olb2D.hh"
#endif
-#include <vector>
-
using namespace olb;
typedef double T;
@@ -39,243 +37,29 @@ typedef double T;
/// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96]
const T cylinderD = 0.1;
const int N = 5; // resolution of the cylinder
-const T deltaR = cylinderD / N; // coarse lattice spacing
-const T lx = 22*cylinderD + deltaR; // length of the channel
-const T ly = 4.1*cylinderD + deltaR; // height of the channel
-const T cylinderX = 2*cylinderD;
-const T cylinderY = 2*cylinderD + deltaR/2;
const T Re = 100.; // Reynolds number
const T tau = 0.51; // relaxation time
const T maxPhysT = 16.; // max. simulation time in s, SI unit
const Characteristics<T> PhysCharacteristics(
- 0.1, // char. phys. length
+ cylinderD, // char. phys. length
1.0, // char. phys. velocity
0.1/Re, // phsy. kinematic viscosity
1.0); // char. phys. density
-void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend)
-{
- OstreamManager clout(std::cout,"prepareGeometry");
- clout << "Prepare Geometry ..." << std::endl;
-
- auto& converter = grid.getConverter();
- auto& sGeometry = grid.getSuperGeometry();
-
- sGeometry.rename(0,1);
-
- const T physSpacing = converter.getPhysDeltaX();
-
- // Set material number for channel walls
- {
- const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
- const Vector<T,2> wallOrigin = origin - physSpacing/4;
-
- IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin);
- sGeometry.rename(1,2,lowerWall);
- }
- {
- const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
- const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 };
-
- IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin);
- sGeometry.rename(1,2,upperWall);
- }
-
- // Set material number for inflow and outflow
- {
- const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
- const Vector<T,2> inflowOrigin = origin - physSpacing/4;
-
- IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin);
- sGeometry.rename(1,3,inflow);
- }
- {
- const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
- const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 };
-
- IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin);
- sGeometry.rename(1,4,outflow);
- }
-
- // Set material number for vertically centered cylinder
- {
- const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderX, cylinderY};
- IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2);
- sGeometry.rename(1,5,obstacle);
- }
-
- sGeometry.clean();
- sGeometry.innerClean();
- sGeometry.checkForErrors();
-
- clout << "Prepare Geometry ... OK" << std::endl;
-}
-
-void disableRefinedArea(Grid2D<T,DESCRIPTOR>& coarseGrid,
- RefiningGrid2D<T,DESCRIPTOR>& fineGrid)
-{
- auto& sGeometry = coarseGrid.getSuperGeometry();
- auto refinedOverlap = fineGrid.getRefinedOverlap();
- sGeometry.reset(*refinedOverlap);
-}
-
-void prepareLattice(Grid2D<T,DESCRIPTOR>& grid)
-{
- OstreamManager clout(std::cout,"prepareLattice");
- clout << "Prepare lattice ..." << std::endl;
-
- auto& converter = grid.getConverter();
- auto& sGeometry = grid.getSuperGeometry();
- auto& sLattice = grid.getSuperLattice();
-
- Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics(
- std::unique_ptr<Dynamics<T,DESCRIPTOR>>(
- new BGKdynamics<T,DESCRIPTOR>(
- grid.getConverter().getLatticeRelaxationFrequency(),
- instances::getBulkMomenta<T,DESCRIPTOR>())));
-
- sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition();
- //createInterpBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
- createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
-
- const T omega = converter.getLatticeRelaxationFrequency();
-
- sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>());
- sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk
- sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls
- sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow
- sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow
- sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder
-
- sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega);
- sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega);
- sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega);
-
- AnalyticalConst2D<T,T> rho0(1.0);
- AnalyticalConst2D<T,T> u0(0.0, 0.0);
-
- auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4});
- sLattice.defineRhoU(materials, rho0, u0);
- sLattice.iniEquilibrium(materials, rho0, u0);
-
- sLattice.initialize();
-
- clout << "Prepare lattice ... OK" << std::endl;
- sGeometry.print();
-}
-
-void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT)
-{
- auto& converter = grid.getConverter();
- auto& sGeometry = grid.getSuperGeometry();
- auto& sLattice = grid.getSuperLattice();
-
- const int iTmaxStart = converter.getLatticeTime(0.4*16);
- const int iTupdate = 5;
-
- if ( iT % iTupdate == 0 && iT <= iTmaxStart ) {
- PolynomialStartScale<T,T> StartScale(iTmaxStart, 1);
-
- T iTvec[1] { T(iT) };
- T frac[1] { };
- StartScale(frac, iTvec);
-
- const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0];
- Poiseuille2D<T> u(sGeometry, 3, maxVelocity, deltaR/2);
-
- sLattice.defineU(sGeometry, 3, u);
- }
-}
-
-void getResults(Grid2D<T,DESCRIPTOR>& grid,
- const std::string& prefix,
- int iT)
-{
- auto& converter = grid.getConverter();
- auto& sLattice = grid.getSuperLattice();
- auto& sGeometry = grid.getSuperGeometry();
-
- SuperVTMwriter2D<T> vtmWriter(prefix);
- SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter);
- SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter);
- SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry);
- SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice);
- vtmWriter.addFunctor(geometry);
- vtmWriter.addFunctor(velocity);
- vtmWriter.addFunctor(pressure);
- vtmWriter.addFunctor(knudsen);
-
- if (iT==0) {
- vtmWriter.createMasterFile();
- }
+#include "../common/model.h"
- vtmWriter.write(iT);
-}
-
-void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid)
+void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid,
+ Vector<T,2> domainOrigin, Vector<T,2> domainExtend)
{
- static T maxDrag = 0.0;
-
- OstreamManager clout(std::cout,"measurement");
-
- auto& sLattice = grid.getSuperLattice();
- auto& sGeometry = grid.getSuperGeometry();
- auto& converter = grid.getConverter();
-
- SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter);
- AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true);
- SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter);
-
- const T radiusCylinder = cylinderD/2;
-
- const T point1[2] { cylinderX - radiusCylinder, cylinderY };
- const T point2[2] { cylinderX + radiusCylinder, cylinderY };
-
- T pressureInFrontOfCylinder, pressureBehindCylinder;
- intpolatePressure(&pressureInFrontOfCylinder, point1);
- intpolatePressure(&pressureBehindCylinder, point2);
-
- T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder;
- clout << "pressureDrop=" << pressureDrop;
-
- const int input[3] {};
- T drag[dragF.getTargetDim()] {};
- dragF(drag, input);
- if (drag[0] > maxDrag) {
- maxDrag = drag[0];
- };
- clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl;
-}
-
-int main(int argc, char* argv[])
-{
- olbInit(&argc, &argv);
- singleton::directories().setOutputDir("./tmp/");
- OstreamManager clout(std::cout,"main");
-
- const Vector<T,2> coarseOrigin {0.0, 0.0};
- const Vector<T,2> coarseExtend {lx, ly};
- IndicatorCuboid2D<T> coarseCuboid(coarseExtend, coarseOrigin);
-
- Grid2D<T,DESCRIPTOR> coarseGrid(
- coarseCuboid,
- RelaxationTime<T>(tau),
- N,
- PhysCharacteristics);
- const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0);
- const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0);
-
- prepareGeometry(coarseGrid, domainOrigin, domainExtend);
-
const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX();
const Vector<T,2> fineOutflowExtend {1*cylinderD, domainExtend[1]};
const Vector<T,2> fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0};
auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false);
- prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend);
+ SchaeferTurek::prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend);
{
const Vector<T,2> origin = fineOutflowGrid.getOrigin();
@@ -294,7 +78,7 @@ int main(int argc, char* argv[])
const Vector<T,2> fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0};
auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false);
- prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend);
+ SchaeferTurek::prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend);
{
const Vector<T,2> origin = fineOutflowGrid2.getOrigin();
@@ -308,8 +92,29 @@ int main(int argc, char* argv[])
IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {coarseDeltaX,0});
fineOutflowGrid.getSuperGeometry().reset(refined);
}
+}
+
+int main(int argc, char* argv[])
+{
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+ OstreamManager clout(std::cout,"main");
- coarseGrid.forEachGrid(prepareLattice);
+ IndicatorCuboid2D<T> coarseCuboid(SchaeferTurek::modelExtend, SchaeferTurek::modelOrigin);
+
+ Grid2D<T,DESCRIPTOR> coarseGrid(
+ coarseCuboid,
+ RelaxationTime<T>(tau),
+ N,
+ PhysCharacteristics);
+ const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0);
+ const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0);
+
+ SchaeferTurek::prepareGeometry(coarseGrid, domainOrigin, domainExtend);
+
+ setupRefinement(coarseGrid, domainOrigin, domainExtend);
+
+ coarseGrid.forEachGrid(SchaeferTurek::prepareLattice);
clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl;
clout << "Starting simulation..." << endl;
@@ -320,8 +125,10 @@ int main(int argc, char* argv[])
coarseGrid.getSuperGeometry().getStatistics().getNvoxel());
timer.start();
+ Grid2D<T,DESCRIPTOR>& cylinderGrid = coarseGrid.locate(SchaeferTurek::cylinderCenter);
+
for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) {
- setBoundaryValues(coarseGrid, iT);
+ SchaeferTurek::setBoundaryValues(coarseGrid, iT);
coarseGrid.collideAndStream();
@@ -330,10 +137,10 @@ int main(int argc, char* argv[])
timer.printStep();
coarseGrid.forEachGrid("cylinder2d", [&](Grid2D<T,DESCRIPTOR>& grid, const std::string& id) {
- getResults(grid, id, iT);
+ SchaeferTurek::getResults(grid, id, iT);
});
- takeMeasurements(coarseGrid);
+ SchaeferTurek::takeMeasurements(cylinderGrid, iT);
}
}