summaryrefslogtreecommitdiff
path: root/apps/adrian/cylinder2d
diff options
context:
space:
mode:
Diffstat (limited to 'apps/adrian/cylinder2d')
-rw-r--r--apps/adrian/cylinder2d/optimized_grid/Makefile (renamed from apps/adrian/cylinder2d/Makefile)0
-rw-r--r--apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp373
-rw-r--r--apps/adrian/cylinder2d/optimized_grid/definitions.mk (renamed from apps/adrian/cylinder2d/definitions.mk)2
-rw-r--r--apps/adrian/cylinder2d/optimized_grid/module.mk (renamed from apps/adrian/cylinder2d/module.mk)0
-rw-r--r--apps/adrian/cylinder2d/outflow_refinement/Makefile105
-rw-r--r--apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp346
-rw-r--r--apps/adrian/cylinder2d/outflow_refinement/definitions.mk30
-rw-r--r--apps/adrian/cylinder2d/outflow_refinement/module.mk29
-rw-r--r--apps/adrian/cylinder2d/playground/Makefile105
-rw-r--r--apps/adrian/cylinder2d/playground/cylinder2d.cpp (renamed from apps/adrian/cylinder2d/cylinder2d.cpp)0
-rw-r--r--apps/adrian/cylinder2d/playground/definitions.mk30
-rw-r--r--apps/adrian/cylinder2d/playground/module.mk29
12 files changed, 1048 insertions, 1 deletions
diff --git a/apps/adrian/cylinder2d/Makefile b/apps/adrian/cylinder2d/optimized_grid/Makefile
index a953954..a953954 100644
--- a/apps/adrian/cylinder2d/Makefile
+++ b/apps/adrian/cylinder2d/optimized_grid/Makefile
diff --git a/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp b/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp
new file mode 100644
index 0000000..74ad91b
--- /dev/null
+++ b/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp
@@ -0,0 +1,373 @@
+/*
+ * Lattice Boltzmann grid refinement sample, written in C++,
+ * using the OpenLB library
+ *
+ * Copyright (C) 2019 Adrian Kummerländer
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+#include "olb2D.h"
+#ifndef OLB_PRECOMPILED
+#include "olb2D.hh"
+#endif
+
+#include <vector>
+
+using namespace olb;
+
+typedef double T;
+
+#define DESCRIPTOR descriptors::D2Q9Descriptor
+
+/// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96]
+const T cylinderD = 0.1;
+const int N = 5; // resolution of the cylinder
+const T deltaR = cylinderD / N; // coarse lattice spacing
+const T lx = 22*cylinderD + deltaR; // length of the channel
+const T ly = 4.1*cylinderD + deltaR; // height of the channel
+const T cylinderX = 2*cylinderD;
+const T cylinderY = 2*cylinderD + deltaR/2;
+
+const T Re = 100.; // Reynolds number
+const T tau = 0.51; // relaxation time
+const T maxPhysT = 16.; // max. simulation time in s, SI unit
+
+const Characteristics<T> PhysCharacteristics(
+ 0.1, // char. phys. length
+ 1.0, // char. phys. velocity
+ 0.1/Re, // phsy. kinematic viscosity
+ 1.0); // char. phys. density
+
+void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend)
+{
+ OstreamManager clout(std::cout,"prepareGeometry");
+ clout << "Prepare Geometry ..." << std::endl;
+
+ auto& converter = grid.getConverter();
+ auto& sGeometry = grid.getSuperGeometry();
+
+ sGeometry.rename(0,1);
+
+ const T physSpacing = converter.getPhysDeltaX();
+
+ // Set material number for channel walls
+ {
+ const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
+ const Vector<T,2> wallOrigin = origin - physSpacing/4;
+
+ IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin);
+ sGeometry.rename(1,2,lowerWall);
+ }
+ {
+ const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
+ const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 };
+
+ IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin);
+ sGeometry.rename(1,2,upperWall);
+ }
+
+ // Set material number for inflow and outflow
+ {
+ const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
+ const Vector<T,2> inflowOrigin = origin - physSpacing/4;
+
+ IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin);
+ sGeometry.rename(1,3,inflow);
+ }
+ {
+ const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
+ const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 };
+
+ IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin);
+ sGeometry.rename(1,4,outflow);
+ }
+
+ // Set material number for vertically centered cylinder
+ {
+ const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderX, cylinderY};
+ IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2);
+ sGeometry.rename(1,5,obstacle);
+ }
+
+ sGeometry.clean();
+ sGeometry.innerClean();
+ sGeometry.checkForErrors();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+void disableRefinedArea(Grid2D<T,DESCRIPTOR>& coarseGrid,
+ RefiningGrid2D<T,DESCRIPTOR>& fineGrid)
+{
+ auto& sGeometry = coarseGrid.getSuperGeometry();
+ auto refinedOverlap = fineGrid.getRefinedOverlap();
+ sGeometry.reset(*refinedOverlap);
+}
+
+void prepareLattice(Grid2D<T,DESCRIPTOR>& grid)
+{
+ OstreamManager clout(std::cout,"prepareLattice");
+ clout << "Prepare lattice ..." << std::endl;
+
+ auto& converter = grid.getConverter();
+ auto& sGeometry = grid.getSuperGeometry();
+ auto& sLattice = grid.getSuperLattice();
+
+ Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics(
+ std::unique_ptr<Dynamics<T,DESCRIPTOR>>(
+ new BGKdynamics<T,DESCRIPTOR>(
+ grid.getConverter().getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>())));
+
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition();
+ //createInterpBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
+ createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>());
+ sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk
+ sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls
+ sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow
+ sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow
+ sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder
+
+ sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega);
+ sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega);
+ sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega);
+
+ AnalyticalConst2D<T,T> rho0(1.0);
+ AnalyticalConst2D<T,T> u0(0.0, 0.0);
+
+ auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4});
+ sLattice.defineRhoU(materials, rho0, u0);
+ sLattice.iniEquilibrium(materials, rho0, u0);
+
+ sLattice.initialize();
+
+ clout << "Prepare lattice ... OK" << std::endl;
+ sGeometry.print();
+}
+
+void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT)
+{
+ auto& converter = grid.getConverter();
+ auto& sGeometry = grid.getSuperGeometry();
+ auto& sLattice = grid.getSuperLattice();
+
+ const int iTmaxStart = converter.getLatticeTime(0.4*16);
+ const int iTupdate = 5;
+
+ if ( iT % iTupdate == 0 && iT <= iTmaxStart ) {
+ PolynomialStartScale<T,T> StartScale(iTmaxStart, 1);
+
+ T iTvec[1] { T(iT) };
+ T frac[1] { };
+ StartScale(frac, iTvec);
+
+ const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0];
+ Poiseuille2D<T> u(sGeometry, 3, maxVelocity, deltaR/2);
+
+ sLattice.defineU(sGeometry, 3, u);
+ }
+}
+
+void getResults(const std::string& prefix,
+ Grid2D<T,DESCRIPTOR>& grid,
+ int iT)
+{
+ OstreamManager clout(std::cout,"getResults");
+
+ auto& converter = grid.getConverter();
+ auto& sLattice = grid.getSuperLattice();
+ auto& sGeometry = grid.getSuperGeometry();
+
+ SuperVTMwriter2D<T> vtmWriter(prefix + "cylinder2d");
+ SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter);
+ SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter);
+ SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry);
+ SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice);
+ vtmWriter.addFunctor(geometry);
+ vtmWriter.addFunctor(velocity);
+ vtmWriter.addFunctor(pressure);
+ vtmWriter.addFunctor(knudsen);
+
+ if (iT==0) {
+ vtmWriter.createMasterFile();
+ }
+
+ vtmWriter.write(iT);
+}
+
+void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid)
+{
+ static T maxDrag = 0.0;
+
+ OstreamManager clout(std::cout,"measurement");
+
+ auto& sLattice = grid.getSuperLattice();
+ auto& sGeometry = grid.getSuperGeometry();
+ auto& converter = grid.getConverter();
+
+ SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter);
+ AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true);
+ SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter);
+
+ const T radiusCylinder = cylinderD/2;
+
+ const T point1[2] { cylinderX - radiusCylinder, cylinderY };
+ const T point2[2] { cylinderX + radiusCylinder, cylinderY };
+
+ T pressureInFrontOfCylinder, pressureBehindCylinder;
+ intpolatePressure(&pressureInFrontOfCylinder, point1);
+ intpolatePressure(&pressureBehindCylinder, point2);
+
+ T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder;
+ clout << "pressureDrop=" << pressureDrop;
+
+ const int input[3] {};
+ T drag[dragF.getTargetDim()] {};
+ dragF(drag, input);
+ if (drag[0] > maxDrag) {
+ maxDrag = drag[0];
+ };
+ clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl;
+}
+
+int main(int argc, char* argv[])
+{
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+ OstreamManager clout(std::cout,"main");
+
+ const Vector<T,2> coarseOrigin {0.0, 0.0};
+ const Vector<T,2> coarseExtend {lx, ly};
+ IndicatorCuboid2D<T> coarseCuboid(coarseExtend, coarseOrigin);
+
+ Grid2D<T,DESCRIPTOR> coarseGrid(
+ coarseCuboid,
+ RelaxationTime<T>(tau),
+ N,
+ PhysCharacteristics);
+ const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0);
+ const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0);
+
+ prepareGeometry(coarseGrid, domainOrigin, domainExtend);
+
+ const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX();
+
+ const Vector<T,2> fineOutflowExtend {1*cylinderD, domainExtend[1]};
+ const Vector<T,2> fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0};
+
+ auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false);
+ prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend);
+
+ {
+ const Vector<T,2> origin = fineOutflowGrid.getOrigin();
+ const Vector<T,2> extend = fineOutflowGrid.getExtend();
+
+ const Vector<T,2> extendY = {0,extend[1]};
+
+ coarseGrid.addFineCoupling(fineOutflowGrid, origin, extendY);
+ coarseGrid.addCoarseCoupling(fineOutflowGrid, origin + Vector<T,2> {coarseDeltaX,0}, extendY);
+
+ IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {2*coarseDeltaX,0});
+ coarseGrid.getSuperGeometry().reset(refined);
+ }
+
+ const Vector<T,2> fineOutflowExtend2 {0.5*cylinderD, domainExtend[1]};
+ const Vector<T,2> fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0};
+
+ auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false);
+ prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend);
+
+ {
+ const Vector<T,2> origin = fineOutflowGrid2.getOrigin();
+ const Vector<T,2> extend = fineOutflowGrid2.getExtend();
+
+ const Vector<T,2> extendY = {0,extend[1]};
+
+ fineOutflowGrid.addFineCoupling(fineOutflowGrid2, origin, extendY);
+ fineOutflowGrid.addCoarseCoupling(fineOutflowGrid2, origin + Vector<T,2> {coarseDeltaX,0}, extendY);
+
+ IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {coarseDeltaX,0});
+ fineOutflowGrid.getSuperGeometry().reset(refined);
+ }
+
+ const Vector<T,2> fineExtend {10.5*cylinderD, domainExtend[1]-2*coarseDeltaX};
+ const Vector<T,2> fineOrigin {0.5*cylinderD, coarseDeltaX};
+
+ auto& fineGrid = coarseGrid.refine(fineOrigin, fineExtend);
+ prepareGeometry(fineGrid, domainOrigin, domainExtend);
+ disableRefinedArea(coarseGrid, fineGrid);
+
+ const Vector<T,2> fineExtend2 {5*cylinderD, fineGrid.getExtend()[1]-2*coarseDeltaX};
+ const Vector<T,2> fineOrigin2 {1*cylinderD, (domainExtend[1]-fineExtend2[1])/2};
+
+ auto& fineGrid2 = fineGrid.refine(fineOrigin2, fineExtend2);
+ prepareGeometry(fineGrid2, domainOrigin, domainExtend);
+ disableRefinedArea(fineGrid, fineGrid2);
+
+ const Vector<T,2> fineExtend3 {1.25*cylinderD, 1.25*cylinderD};
+ const Vector<T,2> fineOrigin3 {cylinderX-fineExtend3[0]/2, cylinderY-fineExtend3[1]/2};
+
+ auto& fineGrid3 = fineGrid2.refine(fineOrigin3, fineExtend3);
+ prepareGeometry(fineGrid3, domainOrigin, domainExtend);
+ disableRefinedArea(fineGrid2, fineGrid3);
+
+ prepareLattice(coarseGrid);
+ prepareLattice(fineOutflowGrid);
+ prepareLattice(fineOutflowGrid2);
+ prepareLattice(fineGrid);
+ prepareLattice(fineGrid2);
+ prepareLattice(fineGrid3);
+
+ clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl;
+ clout << "Starting simulation..." << endl;
+
+ const int statIter = coarseGrid.getConverter().getLatticeTime(0.5);
+ Timer<T> timer(
+ coarseGrid.getConverter().getLatticeTime(maxPhysT),
+ coarseGrid.getSuperGeometry().getStatistics().getNvoxel());
+ timer.start();
+
+ for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) {
+ setBoundaryValues(coarseGrid, iT);
+
+ coarseGrid.collideAndStream();
+
+ if (iT == 0 || iT%statIter == 0) {
+ timer.update(iT);
+ timer.printStep();
+
+ getResults("level0_", coarseGrid, iT);
+ getResults("level1_outflow_", fineOutflowGrid, iT);
+ getResults("level2_outflow_", fineOutflowGrid2, iT);
+ getResults("level1_", fineGrid, iT);
+ getResults("level2_", fineGrid2, iT);
+ getResults("level3_", fineGrid3, iT);
+
+ takeMeasurements(fineGrid3);
+ }
+ }
+
+ timer.stop();
+ timer.printSummary();
+}
diff --git a/apps/adrian/cylinder2d/definitions.mk b/apps/adrian/cylinder2d/optimized_grid/definitions.mk
index 6584906..c11e80b 100644
--- a/apps/adrian/cylinder2d/definitions.mk
+++ b/apps/adrian/cylinder2d/optimized_grid/definitions.mk
@@ -25,6 +25,6 @@
###########################################################################
## DEFINITIONS TO BE CHANGED
-ROOT := ../../..
+ROOT := ../../../..
SRC := cylinder2d.cpp
OUTPUT := cylinder2d
diff --git a/apps/adrian/cylinder2d/module.mk b/apps/adrian/cylinder2d/optimized_grid/module.mk
index 1190482..1190482 100644
--- a/apps/adrian/cylinder2d/module.mk
+++ b/apps/adrian/cylinder2d/optimized_grid/module.mk
diff --git a/apps/adrian/cylinder2d/outflow_refinement/Makefile b/apps/adrian/cylinder2d/outflow_refinement/Makefile
new file mode 100644
index 0000000..a953954
--- /dev/null
+++ b/apps/adrian/cylinder2d/outflow_refinement/Makefile
@@ -0,0 +1,105 @@
+# This file is part of the OpenLB library
+#
+# Copyright (C) 2007 Mathias Krause
+# E-mail contact: info@openlb.net
+# The most recent release of OpenLB can be downloaded at
+# <http://www.openlb.net/>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public
+# License along with this program; if not, write to the Free
+# Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+# Boston, MA 02110-1301, USA.
+
+###########################################################################
+## definitions
+
+include definitions.mk
+
+include $(ROOT)/global.mk
+
+OBJECTS := $(foreach file, $(SRC), $(PWD)/$(file:.cpp=.o))
+DEPS := $(foreach file, $(SRC), $(PWD)/$(file:.cpp=.d))
+
+###########################################################################
+## all
+
+all : depend compile link
+
+
+###########################################################################
+## dependencies
+
+depend : $(DEPS)
+
+$(PWD)/%.d : %.cpp
+ @echo Create dependencies for $<
+ @$(SHELL) -ec '$(CXX) -M $(CXXFLAGS) $(IDIR) $< \
+ | sed -e "s!$*\.o!$(PWD)\/$*\.o!1" > .tmpfile; \
+ cp -f .tmpfile $@;'
+
+###########################################################################
+## compile
+
+compile : $(OBJECTS)
+
+$(PWD)/%.o: %.cpp
+ @echo Compile $<
+ $(CXX) $(CXXFLAGS) $(IDIR) -c $< -o $@
+
+###########################################################################
+## clean
+
+clean : cleanrub cleanobj cleandep
+
+cleanrub:
+ @echo Clean rubbish files
+ @rm -f *~ core .tmpfile tmp/*.* $(OUTPUT)
+ @rm -f tmp/vtkData/*.* tmp/vtkData/data/*.* tmp/imageData/*.* tmp/gnuplotData/*.* tmp/gnuplotData/data/*.*
+
+cleanobj:
+ @echo Clean object files
+ @rm -f $(OBJECTS)
+
+cleandep:
+ @echo Clean dependencies files
+ @rm -f $(DEPS)
+
+cleanbuild:
+ @cd $(ROOT); \
+ $(MAKE) cleanlib;
+
+###########################################################################
+## update lib
+
+$(ROOT)/$(LIBDIR)/lib$(LIB).a :
+ @cd $(ROOT); \
+ $(MAKE) all
+
+###########################################################################
+## link
+
+link: $(OUTPUT)
+
+$(OUTPUT): $(OBJECTS) $(ROOT)/$(LIBDIR)/lib$(LIB).a
+ @echo Link $@
+ $(CXX) $(foreach file, $(SRC), $(file:.cpp=.o)) $(LDFLAGS) -L$(ROOT)/$(LIBDIR) -l$(LIB) -lz -o $@
+
+###########################################################################
+## include dependencies
+
+ifneq "$(strip $(wildcard *.d))" ""
+ include $(foreach file,$(DEPS),$(file))
+endif
+
+###########################################################################
+###########################################################################
diff --git a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp
new file mode 100644
index 0000000..8b6a49c
--- /dev/null
+++ b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp
@@ -0,0 +1,346 @@
+/*
+ * Lattice Boltzmann grid refinement sample, written in C++,
+ * using the OpenLB library
+ *
+ * Copyright (C) 2019 Adrian Kummerländer
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+#include "olb2D.h"
+#ifndef OLB_PRECOMPILED
+#include "olb2D.hh"
+#endif
+
+#include <vector>
+
+using namespace olb;
+
+typedef double T;
+
+#define DESCRIPTOR descriptors::D2Q9Descriptor
+
+/// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96]
+const T cylinderD = 0.1;
+const int N = 5; // resolution of the cylinder
+const T deltaR = cylinderD / N; // coarse lattice spacing
+const T lx = 22*cylinderD + deltaR; // length of the channel
+const T ly = 4.1*cylinderD + deltaR; // height of the channel
+const T cylinderX = 2*cylinderD;
+const T cylinderY = 2*cylinderD + deltaR/2;
+
+const T Re = 100.; // Reynolds number
+const T tau = 0.51; // relaxation time
+const T maxPhysT = 16.; // max. simulation time in s, SI unit
+
+const Characteristics<T> PhysCharacteristics(
+ 0.1, // char. phys. length
+ 1.0, // char. phys. velocity
+ 0.1/Re, // phsy. kinematic viscosity
+ 1.0); // char. phys. density
+
+void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend)
+{
+ OstreamManager clout(std::cout,"prepareGeometry");
+ clout << "Prepare Geometry ..." << std::endl;
+
+ auto& converter = grid.getConverter();
+ auto& sGeometry = grid.getSuperGeometry();
+
+ sGeometry.rename(0,1);
+
+ const T physSpacing = converter.getPhysDeltaX();
+
+ // Set material number for channel walls
+ {
+ const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
+ const Vector<T,2> wallOrigin = origin - physSpacing/4;
+
+ IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin);
+ sGeometry.rename(1,2,lowerWall);
+ }
+ {
+ const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
+ const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 };
+
+ IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin);
+ sGeometry.rename(1,2,upperWall);
+ }
+
+ // Set material number for inflow and outflow
+ {
+ const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
+ const Vector<T,2> inflowOrigin = origin - physSpacing/4;
+
+ IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin);
+ sGeometry.rename(1,3,inflow);
+ }
+ {
+ const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
+ const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 };
+
+ IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin);
+ sGeometry.rename(1,4,outflow);
+ }
+
+ // Set material number for vertically centered cylinder
+ {
+ const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderX, cylinderY};
+ IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2);
+ sGeometry.rename(1,5,obstacle);
+ }
+
+ sGeometry.clean();
+ sGeometry.innerClean();
+ sGeometry.checkForErrors();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+void disableRefinedArea(Grid2D<T,DESCRIPTOR>& coarseGrid,
+ RefiningGrid2D<T,DESCRIPTOR>& fineGrid)
+{
+ auto& sGeometry = coarseGrid.getSuperGeometry();
+ auto refinedOverlap = fineGrid.getRefinedOverlap();
+ sGeometry.reset(*refinedOverlap);
+}
+
+void prepareLattice(Grid2D<T,DESCRIPTOR>& grid)
+{
+ OstreamManager clout(std::cout,"prepareLattice");
+ clout << "Prepare lattice ..." << std::endl;
+
+ auto& converter = grid.getConverter();
+ auto& sGeometry = grid.getSuperGeometry();
+ auto& sLattice = grid.getSuperLattice();
+
+ Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics(
+ std::unique_ptr<Dynamics<T,DESCRIPTOR>>(
+ new BGKdynamics<T,DESCRIPTOR>(
+ grid.getConverter().getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>())));
+
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition();
+ //createInterpBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
+ createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>());
+ sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk
+ sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls
+ sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow
+ sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow
+ sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder
+
+ sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega);
+ sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega);
+ sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega);
+
+ AnalyticalConst2D<T,T> rho0(1.0);
+ AnalyticalConst2D<T,T> u0(0.0, 0.0);
+
+ auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4});
+ sLattice.defineRhoU(materials, rho0, u0);
+ sLattice.iniEquilibrium(materials, rho0, u0);
+
+ sLattice.initialize();
+
+ clout << "Prepare lattice ... OK" << std::endl;
+ sGeometry.print();
+}
+
+void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT)
+{
+ auto& converter = grid.getConverter();
+ auto& sGeometry = grid.getSuperGeometry();
+ auto& sLattice = grid.getSuperLattice();
+
+ const int iTmaxStart = converter.getLatticeTime(0.4*16);
+ const int iTupdate = 5;
+
+ if ( iT % iTupdate == 0 && iT <= iTmaxStart ) {
+ PolynomialStartScale<T,T> StartScale(iTmaxStart, 1);
+
+ T iTvec[1] { T(iT) };
+ T frac[1] { };
+ StartScale(frac, iTvec);
+
+ const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0];
+ Poiseuille2D<T> u(sGeometry, 3, maxVelocity, deltaR/2);
+
+ sLattice.defineU(sGeometry, 3, u);
+ }
+}
+
+void getResults(const std::string& prefix,
+ Grid2D<T,DESCRIPTOR>& grid,
+ int iT)
+{
+ OstreamManager clout(std::cout,"getResults");
+
+ auto& converter = grid.getConverter();
+ auto& sLattice = grid.getSuperLattice();
+ auto& sGeometry = grid.getSuperGeometry();
+
+ SuperVTMwriter2D<T> vtmWriter(prefix + "cylinder2d");
+ SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter);
+ SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter);
+ SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry);
+ SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice);
+ vtmWriter.addFunctor(geometry);
+ vtmWriter.addFunctor(velocity);
+ vtmWriter.addFunctor(pressure);
+ vtmWriter.addFunctor(knudsen);
+
+ if (iT==0) {
+ vtmWriter.createMasterFile();
+ }
+
+ vtmWriter.write(iT);
+}
+
+void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid)
+{
+ static T maxDrag = 0.0;
+
+ OstreamManager clout(std::cout,"measurement");
+
+ auto& sLattice = grid.getSuperLattice();
+ auto& sGeometry = grid.getSuperGeometry();
+ auto& converter = grid.getConverter();
+
+ SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter);
+ AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true);
+ SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter);
+
+ const T radiusCylinder = cylinderD/2;
+
+ const T point1[2] { cylinderX - radiusCylinder, cylinderY };
+ const T point2[2] { cylinderX + radiusCylinder, cylinderY };
+
+ T pressureInFrontOfCylinder, pressureBehindCylinder;
+ intpolatePressure(&pressureInFrontOfCylinder, point1);
+ intpolatePressure(&pressureBehindCylinder, point2);
+
+ T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder;
+ clout << "pressureDrop=" << pressureDrop;
+
+ const int input[3] {};
+ T drag[dragF.getTargetDim()] {};
+ dragF(drag, input);
+ if (drag[0] > maxDrag) {
+ maxDrag = drag[0];
+ };
+ clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl;
+}
+
+int main(int argc, char* argv[])
+{
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+ OstreamManager clout(std::cout,"main");
+
+ const Vector<T,2> coarseOrigin {0.0, 0.0};
+ const Vector<T,2> coarseExtend {lx, ly};
+ IndicatorCuboid2D<T> coarseCuboid(coarseExtend, coarseOrigin);
+
+ Grid2D<T,DESCRIPTOR> coarseGrid(
+ coarseCuboid,
+ RelaxationTime<T>(tau),
+ N,
+ PhysCharacteristics);
+ const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0);
+ const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0);
+
+ prepareGeometry(coarseGrid, domainOrigin, domainExtend);
+
+ const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX();
+
+ const Vector<T,2> fineOutflowExtend {1*cylinderD, domainExtend[1]};
+ const Vector<T,2> fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0};
+
+ auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false);
+ prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend);
+
+ {
+ const Vector<T,2> origin = fineOutflowGrid.getOrigin();
+ const Vector<T,2> extend = fineOutflowGrid.getExtend();
+
+ const Vector<T,2> extendY = {0,extend[1]};
+
+ coarseGrid.addFineCoupling(fineOutflowGrid, origin, extendY);
+ coarseGrid.addCoarseCoupling(fineOutflowGrid, origin + Vector<T,2> {coarseDeltaX,0}, extendY);
+
+ IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {2*coarseDeltaX,0});
+ coarseGrid.getSuperGeometry().reset(refined);
+ }
+
+ const Vector<T,2> fineOutflowExtend2 {0.5*cylinderD, domainExtend[1]};
+ const Vector<T,2> fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0};
+
+ auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false);
+ prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend);
+
+ {
+ const Vector<T,2> origin = fineOutflowGrid2.getOrigin();
+ const Vector<T,2> extend = fineOutflowGrid2.getExtend();
+
+ const Vector<T,2> extendY = {0,extend[1]};
+
+ fineOutflowGrid.addFineCoupling(fineOutflowGrid2, origin, extendY);
+ fineOutflowGrid.addCoarseCoupling(fineOutflowGrid2, origin + Vector<T,2> {coarseDeltaX,0}, extendY);
+
+ IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {coarseDeltaX,0});
+ fineOutflowGrid.getSuperGeometry().reset(refined);
+ }
+
+ prepareLattice(coarseGrid);
+ prepareLattice(fineOutflowGrid);
+ prepareLattice(fineOutflowGrid2);
+
+ clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl;
+ clout << "Starting simulation..." << endl;
+
+ const int statIter = coarseGrid.getConverter().getLatticeTime(0.5);
+ Timer<T> timer(
+ coarseGrid.getConverter().getLatticeTime(maxPhysT),
+ coarseGrid.getSuperGeometry().getStatistics().getNvoxel());
+ timer.start();
+
+ for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) {
+ setBoundaryValues(coarseGrid, iT);
+
+ coarseGrid.collideAndStream();
+
+ if (iT == 0 || iT%statIter == 0) {
+ timer.update(iT);
+ timer.printStep();
+
+ getResults("level0_", coarseGrid, iT);
+ getResults("level1_outflow_", fineOutflowGrid, iT);
+ getResults("level2_outflow_", fineOutflowGrid2, iT);
+
+ takeMeasurements(coarseGrid);
+ }
+ }
+
+ timer.stop();
+ timer.printSummary();
+}
diff --git a/apps/adrian/cylinder2d/outflow_refinement/definitions.mk b/apps/adrian/cylinder2d/outflow_refinement/definitions.mk
new file mode 100644
index 0000000..c11e80b
--- /dev/null
+++ b/apps/adrian/cylinder2d/outflow_refinement/definitions.mk
@@ -0,0 +1,30 @@
+# This file is part of the OpenLB library
+#
+# Copyright (C) 2007 Mathias Krause
+# E-mail contact: info@openlb.net
+# The most recent release of OpenLB can be downloaded at
+# <http://www.openlb.net/>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public
+# License along with this progr