aboutsummaryrefslogtreecommitdiff
path: root/codegen_lbm.py
blob: 3e1865c36a345241a4e66065acd216e1569a38b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import pyopencl as cl
mf = cl.mem_flags

import numpy
import time

import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('AGG')

from sympy import *
from sympy.codegen.ast import Assignment

from mako.template import Template

q = 9
d = 2

c = [ Matrix(x) for x in [(-1, 1), ( 0, 1), ( 1, 1), (-1, 0), ( 0, 0), ( 1, 0), (-1,-1), ( 0, -1), ( 1, -1)] ]
w = [ Rational(*x) for x in [(1,36), (1,9), (1,36), (1,9), (4,9), (1,9), (1,36), (1,9), (1,36)] ]

c_s = sqrt(Rational(1,3))

rho, tau = symbols('rho tau')

f_next = symarray('f_next', q)
f_curr = symarray('f_curr', q)

u = Matrix(symarray('u', d))

moments = [ Assignment(rho, sum(f_curr)) ]

for i, u_i in enumerate(u):
    moments.append(Assignment(u_i, sum([ (c_j*f_curr[j])[i] for j, c_j in enumerate(c) ]) / sum(f_curr)))

moments_opt = cse(moments, optimizations='basic', symbols=numbered_symbols(prefix='m'))

f_eq = []

for i, c_i in enumerate(c):
    f_eq_i = w[i] * rho * (  1
                           + c_i.dot(u)    /    c_s**2
                           + c_i.dot(u)**2 / (2*c_s**4)
                           - u.dot(u)      / (2*c_s**2) )
    f_eq.append(f_eq_i)

collide = [ Assignment(f_next[i], f_curr[i] + 1/tau * ( f_eq_i - f_curr[i] )) for i, f_eq_i in enumerate(f_eq) ]
collide_opt = cse(collide, optimizations='basic')

kernel = """
__constant float tau = ${tau};

<%
def direction_index(c_i):
    return (c_i[0]+1) + 3*(1-c_i[1])
%>

__kernel void collide_and_stream(__global __write_only float* f_a,
                                 __global __read_only  float* f_b,
                                 __global __read_only  int* material)
{
    const unsigned int gid = get_global_id(1)*${nX} + get_global_id(0);

    const int m = material[gid];

    if ( m == 0 ) {
        return;
    }

% for i, c_i in enumerate(c):
    const float f_curr_${i} = f_b[${direction_index(c_i)*nCells}u + (get_global_id(1)-(${c_i[1]}))*${nX} + get_global_id(0)-(${c_i[0]})];
% endfor

% for i, expr in enumerate(moments_helper):
    const float ${expr[0]} = ${ccode(expr[1])};
% endfor

% for i, expr in enumerate(moments_assignment):
    float ${ccode(expr)}
% endfor

    if ( m == 2 ) {
        u_0 = 0.0;
        u_1 = 0.0;
    }

% for i, expr in enumerate(collide_helper):
    const float ${expr[0]} = ${ccode(expr[1])};
% endfor

% for i, expr in enumerate(collide_assignment):
    const float ${ccode(expr)}
% endfor

% for i in range(0,len(c)):
    f_a[${i*nCells} + gid] = f_next_${i};
% endfor
}

__kernel void collect_moments(__global __read_only  float* f,
                              __global __write_only float* moments)
{
    const unsigned int gid = get_global_id(1)*${nX} + get_global_id(0);

% for i in range(0,len(c)):
    const float f_curr_${i} = f[${i*nCells}u + gid];
% endfor

% for i, expr in enumerate(moments_helper):
    const float ${expr[0]} = ${ccode(expr[1])};
% endfor

% for i, expr in enumerate(moments_assignment):
    moments[${i*nCells} + gid] = ${ccode(expr.rhs)};
% endfor
}"""


class D2Q9_BGK_Lattice:
    def idx(self, x, y):
        return y * self.nX + x;

    def __init__(self, nX, nY):
        self.nX = nX
        self.nY = nY
        self.nCells = nX * nY
        self.tick = True

        self.platform = cl.get_platforms()[0]
        self.context  = cl.Context(properties=[(cl.context_properties.PLATFORM, self.platform)])
        self.queue = cl.CommandQueue(self.context)

        self.np_pop_a = numpy.ndarray(shape=(9, self.nCells), dtype=numpy.float32)
        self.np_pop_b = numpy.ndarray(shape=(9, self.nCells), dtype=numpy.float32)

        self.np_moments  = numpy.ndarray(shape=(3, self.nCells), dtype=numpy.float32)
        self.np_material = numpy.ndarray(shape=(self.nCells, 1), dtype=numpy.int32)

        self.np_stat_moments = []

        self.setup_geometry()

        self.equilibrilize()
        self.setup_anomaly()

        self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_pop_a)
        self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_pop_b)

        self.cl_material = cl.Buffer(self.context, mf.READ_ONLY  | mf.USE_HOST_PTR, hostbuf=self.np_material)
        self.cl_moments  = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_moments)

        self.build_kernel()

    def setup_geometry(self):
        self.np_material[:] = 0
        for x in range(1,self.nX-1):
            for y in range(1,self.nY-1):
                if x == 1 or y == 1 or x == self.nX-2 or y == self.nY-2:
                    self.np_material[self.idx(x,y)] = 2
                else:
                    self.np_material[self.idx(x,y)] = 1

    def equilibrilize(self):
        self.np_pop_a[(0,2,6,8),:] = 1./36.
        self.np_pop_a[(1,3,5,7),:] = 1./9.
        self.np_pop_a[4,:] = 4./9.

        self.np_pop_b[(0,2,6,8),:] = 1./36.
        self.np_pop_b[(1,3,5,7),:] = 1./9.
        self.np_pop_b[4,:] = 4./9.

    def setup_anomaly(self):
        bubbles = [ [        self.nX//4,        self.nY//4],
                    [        self.nX//4,self.nY-self.nY//4],
                    [self.nX-self.nX//4,        self.nY//4],
                    [self.nX-self.nX//4,self.nY-self.nY//4] ]

        for x in range(0,self.nX-1):
            for y in range(0,self.nY-1):
                for [a,b] in bubbles:
                    if numpy.sqrt((x-a)*(x-a)+(y-b)*(y-b)) < self.nX//10:
                        self.np_pop_a[:,self.idx(x,y)] = 1./24.
                        self.np_pop_b[:,self.idx(x,y)] = 1./24.

    def build_kernel(self):
        self.program = cl.Program(self.context, Template(kernel).render(
            nX     = self.nX,
            nY     = self.nY,
            nCells = self.nCells,
            tau    = '0.8f',
            moments_helper     = moments_opt[0],
            moments_assignment = moments_opt[1],
            collide_helper     = collide_opt[0],
            collide_assignment = collide_opt[1],
            c = c,
            ccode = ccode
        )).build()

    def collect_moments(self):
        if self.tick:
            self.program.collect_moments(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_b, self.cl_moments)
        else:
            self.program.collect_moments(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_moments)

        cl.enqueue_copy(LBM.queue, self.np_moments, LBM.cl_moments).wait();
        self.np_stat_moments.append(self.np_moments.copy())

    def evolve(self):
        if self.tick:
            self.tick = False
            self.program.collide_and_stream(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_pop_b, self.cl_material)
        else:
            self.tick = True
            self.program.collide_and_stream(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_b, self.cl_pop_a, self.cl_material)

    def sync(self):
        self.queue.finish()

    def generate_moment_plots(self):
        for i, np_moments in enumerate(self.np_stat_moments):
            print("Generating plot %d of %d." % (i+1, len(self.np_stat_moments)))

            density = numpy.ndarray(shape=(self.nX-2, self.nY-2))
            for y in range(1,self.nY-1):
                for x in range(1,self.nX-1):
                    density[y-1,x-1] = np_moments[0,self.idx(x,y)]

            plt.figure(figsize=(10, 10))
            plt.imshow(density, vmin=0.2, vmax=2.0, cmap=plt.get_cmap("seismic"))
            plt.savefig("result/density_" + str(i) + ".png", bbox_inches='tight', pad_inches=0)

        self.np_stat_moments = []


def MLUPS(cells, steps, time):
    return cells * steps / time * 1e-6

nUpdates = 1000
nStat = 100

print("Initializing simulation...\n")

LBM = D2Q9_BGK_Lattice(1024, 1024)

print("Starting simulation using %d cells...\n" % LBM.nCells)

lastStat = time.time()

for i in range(1,nUpdates+1):
    LBM.evolve()

    if i % nStat == 0:
        LBM.sync()
        print("i = %4d; %3.0f MLUPS" % (i, MLUPS(LBM.nCells, nStat, time