aboutsummaryrefslogtreecommitdiff
path: root/codegen_lbm.py
blob: a71fc15144c50138f2609b9c9a0c28b768586251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pyopencl as cl
mf = cl.mem_flags

import numpy
import time

import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('AGG')

import sympy
import lbm_d2q9 as D2Q9

from mako.template import Template

class D2Q9_BGK_Lattice:
    def idx(self, x, y):
        return y * self.nX + x;

    def __init__(self, nX, nY, tau, geometry):
        self.nX = nX
        self.nY = nY
        self.nCells = nX * nY
        self.tau = tau
        self.tick = True

        self.platform = cl.get_platforms()[0]
        self.context  = cl.Context(properties=[(cl.context_properties.PLATFORM, self.platform)])
        self.queue = cl.CommandQueue(self.context)

        self.np_material = numpy.ndarray(shape=(self.nCells, 1), dtype=numpy.int32)
        self.setup_geometry(geometry)

        self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE, size=9*self.nCells*numpy.float32(0).nbytes)
        self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE, size=9*self.nCells*numpy.float32(0).nbytes)

        self.cl_moments  = cl.Buffer(self.context, mf.WRITE_ONLY, size=3*self.nCells*numpy.float32(0).nbytes)
        self.cl_material = cl.Buffer(self.context, mf.READ_ONLY | mf.USE_HOST_PTR, hostbuf=self.np_material)

        self.build_kernel()

        self.program.equilibrilize(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_pop_b).wait()

    def setup_geometry(self, geometry):
        for y in range(1,self.nY-1):
            for x in range(1,self.nX-1):
                self.np_material[self.idx(x,y)] = geometry(self.nX,self.nY,x,y)

    def build_kernel(self):
        program_src = Template(filename = './template/kernel.mako').render(
            nX     = self.nX,
            nY     = self.nY,
            nCells = self.nCells,
            tau    = self.tau,
            moments_helper     = D2Q9.moments_opt[0],
            moments_assignment = D2Q9.moments_opt[1],
            collide_helper     = D2Q9.collide_opt[0],
            collide_assignment = D2Q9.collide_opt[1],
            c     = D2Q9.c,
            w     = D2Q9.w,
            ccode = sympy.ccode
        )
        self.program = cl.Program(self.context, program_src).build()

    def evolve(self):
        if self.tick:
            self.tick = False
            self.program.collide_and_stream(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_pop_b, self.cl_material)
        else:
            self.tick = True
            self.program.collide_and_stream(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_b, self.cl_pop_a, self.cl_material)

    def sync(self):
        self.queue.finish()

    def get_moments(self):
        moments = numpy.ndarray(shape=(3, self.nCells), dtype=numpy.float32)
        if self.tick:
            self.program.collect_moments(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_b, self.cl_moments)
        else:
            self.program.collect_moments(self.queue, (self.nX,self.nY), (32,1), self.cl_pop_a, self.cl_moments)
        cl.enqueue_copy(LBM.queue, moments, LBM.cl_moments).wait();
        return moments


def MLUPS(cells, steps, time):
    return cells * steps / time * 1e-6

def generate_moment_plots(lattice, moments):
    for i, m in enumerate(moments):
        print("Generating plot %d of %d." % (i+1, len(moments)))

        density = numpy.ndarray(shape=(lattice.nY-2, lattice.nX-2))
        for y in range(1,lattice.nY-1):
            for x in range(1,lattice.nX-1):
                density[y-1,x-1] = m[0,lattice.idx(x,y)]

        plt.figure(figsize=(10, 10))
        plt.imshow(density, origin='lower', vmin=0.2, vmax=2.0, cmap=plt.get_cmap('seismic'))
        plt.savefig("result/density_" + str(i) + ".png", bbox_inches='tight', pad_inches=0)

def box(nX, nY, x, y):
    if x == 1 or y == 1 or x == nX-2 or y == nY-2:
        return 2
    else:
        return 1

nUpdates = 1000
nStat    = 100

moments = []

print("Initializing simulation...\n")

LBM = D2Q9_BGK_Lattice(nX = 1024, nY = 1024, tau = 0.8, geometry = box)

print("Starting simulation using %d cells...\n" % LBM.nCells)

lastStat = time.time()

for i in range(1,nUpdates+1):
    LBM.evolve()

    if i % nStat == 0:
        LBM.sync()
        print("i = %4d; %3.0f MLUPS" % (i, MLUPS(LBM.nCells, nStat, time.time() - lastStat)))
        moments.append(LBM.get_moments())
        lastStat = time.time()

print("\nConcluded simulation.\n")

generate_moment_plots(LBM, moments)