1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Thread layouting in OpenCL\n",
"## Setup PyOpenCL"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pyopencl as cl\n",
"import numpy"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"platform = cl.get_platforms()[0]\n",
"context = cl.Context(properties=[(cl.context_properties.PLATFORM, platform)])\n",
"queue = cl.CommandQueue(context)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<pyopencl.Platform 'NVIDIA CUDA' at 0x28ef860>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"platform"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initialize array for storing group and local IDs"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"nX = 16\n",
"nY = 16"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"np_data = numpy.ndarray(shape=(nX*nY, 4), dtype=numpy.int32)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"np_data[:,:] = 0"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 0, 0, 0],\n",
" [0, 0, 0, 0],\n",
" [0, 0, 0, 0],\n",
" ...,\n",
" [0, 0, 0, 0],\n",
" [0, 0, 0, 0],\n",
" [0, 0, 0, 0]], dtype=int32)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_data"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"cl_data = cl.Buffer(context, cl.mem_flags.READ_WRITE | cl.mem_flags.USE_HOST_PTR, hostbuf=np_data)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<pyopencl._cl.Buffer at 0x7efd2d9f2888>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cl_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Define OpenCL kernel\n",
"\n",
"Simply writes out group and local indices to the given data array."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"program = cl.Program(context, \"\"\"\n",
"__kernel void test(__global int* data)\n",
"{\n",
" const unsigned int gid = 4*(get_global_id(1)*get_global_size(1) + get_global_id(0));\n",
" data[gid + 0] = get_group_id(0);\n",
" data[gid + 1] = get_group_id(1);\n",
" data[gid + 2] = get_local_id(0);\n",
" data[gid + 3] = get_local_id(1);\n",
"}\"\"\").build()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Test output for a 1x1 work group size:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0, 0, 0, 0],\n",
" [ 1, 0, 0, 0],\n",
" [ 2, 0, 0, 0],\n",
" ...,\n",
" [13, 15, 0, 0],\n",
" [14, 15, 0, 0],\n",
" [15, 15, 0, 0]], dtype=int32)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"program.test(queue, (nX,nY), (1,1), cl_data)\n",
"queue.finish()\n",
"cl.enqueue_copy(queue, np_data, cl_data).wait();\n",
"np_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test various work group sizes"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def computeWorkgroup(i, j):\n",
" program.test(queue, (nX,nY), (i,j), cl_data)\n",
" queue.finish()\n",
" cl.enqueue_copy(queue, np_data, cl_data).wait();"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],\n",
" [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]], dtype=int32)"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"computeWorkgroup(4,4)\n",
"np_data.reshape((nX, nY, 4))[:,:,0] # x-index of work group"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\n",
" [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\n",
" [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\n",
" [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\n",
" [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n",
" [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n",
" [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n",
" [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]], dtype=int32)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_data.reshape((nX, nY, 4))[:,:,1] # y-index of work group"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"computeWorkgroup(8,2)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_data.reshape((nX, nY, 4))[:,:,0]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\n",
" [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],\n",
" [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n",
" [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],\n",
" [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4],\n",
" [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4],\n",
" [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5],\n",
" [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5],\n",
" [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6],\n",
" [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6],\n",
" [7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7],\n",
" [7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]], dtype=int32)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_data.reshape((nX, nY, 4))[:,:,1]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7]], dtype=int32)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_data.reshape((nX, nY, 4))[:,:,2]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],\n",
" [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np_data.reshape((nX, nY, 4))[:,:,3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate some visuals"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"def plotWorkgroupConfig(i,j):\n",
" computeWorkgroup(i,j)\n",
" data = np_data.reshape((nX, nY, 4))\n",
" for k in range(0,4):\n",
" plt.subplot(1,4,k+1)\n",
" plt.imshow(np_data.reshape((nX, nY, 4))[:,:,k])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAABrCAYAAABnlHmpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAACAxJREFUeJzt3U1oXNcZxvHn1YwlTZPKkj+jJnGahbNI7EKKiAktbSAtuN04m5Y4Gy0MLoFsuigVdBG6ateF0tYLY0NJQmkLcamhTQRNCi3GLoU2KSRWHCdWrVpRrUBiog9bbxeaiPlSR5q59545Z/4/CHfOyVHum0fXrw73zljm7gIAxG8gdAEAgGzQ0AEgETR0AEgEDR0AEkFDB4BE0NABIBE0dABIBA0dABLRVUM3s6Nm9paZzZjZVFZFYR355ods80O24VinnxQ1s5KktyV9XdKspIuSjrv7vzb7mkEb8mHdVf/f2VGuX1RuGEtaK9f/3PGyNa8pqWFN8/m9cU2pxf97i7lyea1uPDhwu2nNcKl+rjKw0rSmYqsN4+afp3/7x/KCu+/dbr6tskW9j7TYUbYS+bazpFta8WUj23x8eu22W9ei7W3ZY5Jm3P2KJJnZS5KOSdr0Gzesu3TEnqwvYM/+uvHavrGmr1vZU//NXtrdXPbSWH1zXB5rbvoro/XNenX0TtOa8s7mRrx79OO68YGRxaY1D909Xzc+VJltWnN46Hrd+JHBStOa0vjMe9WX28q3Vbao96r/uqNsJfJt54JPf/qSbHNQc+3+X93ccrlX0rWa8Wx1ro6ZnTSzS2Z2aVXLXZyu77TNl2w7xrWbH7INqJuG3rwFlpruV7j7KXefcPeJHRrq4nR9p22+ZNsxrt38kG1A3TT0WUn314zvk3R9k7XYPvLND9nmh2wD6uYe+kVJB83sQUn/lvS0pGcyqQrSNvO1HeWm5xFoMLfxims3P2QbUMcN3d1vm9lzkv4gqSTptLu/mVllfY5880O2+SHbsLrZocvdz0s6n1EtaEC++SHb/JBtOHxSFAAS0dUOHT2kXG75Hn7UmGu/BIgZO3QASAQNHQASQUMHgETQ0AEgETwUTcRaeaDpLzED0F/YoQNAImjoAJAIGjoAJIJ76InwsrX8xR8A+gc7dABIBA0dABJBQweARNDQASARPEVLxFpJWhrj5zPQz+gAAJAIGjoAJIKGDgCJ4B56IrwsLY9Z6DIABMQOHQASQUMHgETQ0AEgETR0AEgED0UT4SVpZdRDlwEgIHboAJAIGjoAJIKGDgCJ4B56IrzkWh29E7oMAAGxQweARNDQASARNHQASAQNHQASwUPRVJRc5Z0roasAEBA7dABIBA0dABLRtqGb2WkzmzezN2rmdpnZK2Z2uXocy7fMdJ347g3dc+hdfeGJ9zfmyDcb8z//ra5+50e69r2fbMyRbTbe9Et6zX+nv/ofN+bINryt7NDPSDraMDcladrdD0qaro7Rgclvj+j8C+ON0+Sbgc9+9VGNT002TpNtBj6nB/Sovtw4TbaBtX0o6u6vm9nnG6aPSXqi+vqspD9J+n6GdfWNrzxe0dVrq43T2863XF7T7tGPsy4vbo/v1fKND3WztJ7NlfVZrt0MjNlefeK3GqfJNrBO76Hvd/c5Saoe92VXEkS+eSLb/JBtYLm/bdHMTko6KUnD+kzep+srtdkO7hsJXE16uHbzQ7b56HSHfsPMxiWpepzfbKG7n3L3CXef2KGhDk/Xd7aUb2225Z38odgirt38kG1gne7Qz0malPTj6vHlzCqC1EG+gwO3dWBkMe+6onPr1ke6OnBHB0YWdXF9ims3P2QbWNuGbmYvav1Bxx4zm5X0vNa/Yb8ysxOS3pf0rTyLTNkzz/5Hr/3lEy3cvKMDX3xXkvaIfDNx4flXtfD3OS1/uKTzT/1SItvM/NMvaFEfaFXL+rP/XpJJZBvcVt7lcnyTf/VkxrX0pRd+dk/duDQ+s+Du/xX5du3ID79WN/7Nl35Bthk5bEfqxhd8Wkt+i2wD45OiAJAIGjoAJIK/bTERw6XbeujuTd9UAKAPsEMHgETQ0AEgETR0AEgE99ATURlY0aHKbOgyAATEDh0AEkFDB4BE0NABIBE0dABIBA9FE1GxVR0euh66DAABsUMHgETQ0AEgETR0AEgE99ATUbEBPTJYCV0GgIDYoQNAImjoAJAIGjoAJIKGDgCJMHcv7mRmH0h6T+u/fX2hsBNnp4i6H3D3vdv9IrLdko6ylaLPl2zz1TP5FtrQN05qdsndJwo/cZdiqDuGGluJpe5Y6qwVS82x1Nmol+rmlgsAJIKGDgCJCNXQTwU6b7diqDuGGluJpe5Y6qwVS82x1NmoZ+oOcg8dAJA9brkAQCIKb+hmdtTM3jKzGTObKvr8W2Fmp81s3szeqJnbZWavmNnl6nEsZI2txJCtFGe+ZJuvGPKNIdtCG7qZlST9VNI3JD0s6biZPVxkDVt0RtLRhrkpSdPuflDSdHXcMyLKVoosX7LNV0T5nlGPZ1v0Dv0xSTPufsXdVyS9JOlYwTW05e6vS7rZMH1M0tnq67OSniq0qPaiyFaKMl+yzVcU+caQbdEN/V5J12rGs9W5GOx39zlJqh73Ba6nUczZSr2dL9nmK+Z8eyrbohu6tZjjbTbZINv8kG2+yDcjRTf0WUn314zvkxTLbza+YWbjklQ9zgeup1HM2Uq9nS/Z5ivmfHsq26Ib+kVJB83sQTMblPS0pHMF19Cpc5Imq68nJb0csJZWYs5W6u18yTZfMefbW9m6e6H/SPqmpLclvSPpB0Wff4s1vihpTtKq1ncPJyTt1vpT7MvV467QdcaYbaz5ki35xpAtnxQFgETwSVEASAQNHQASQUMHgETQ0AEgETR0AEgEDR0AEkFDB4BE0NABIBH/A/6TJLQTZrhjAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plotWorkgroupConfig(1,1)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAABrCAYAAABnlHmpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAB6NJREFUeJzt3U+IXeUZx/Hf00mMSWhL4vhn6p9WJIKiRcqQ4kYEkcRuRiiVRApZBETBTVcOdOHGRVYuBBFDCclGpbhJoAGxgdZFKWRKS0gLJqOJmakxcUz8A5V0Rh4Xcw03Jzfek3POe859n/v9QLj3nNx5z8NvXh4O58y5r7m7AAD5+0HXBQAAmkFDB4AgaOgAEAQNHQCCoKEDQBA0dAAIgoYOAEHQ0AEgiFoN3cy2m9n7ZjZvZrNNFYVV5JsO2aZDtt2xqk+KmtmEpBOSHpe0KOmopJ3u/p9r/cwNts5v1MZKx+u3Mll/DEmyTSuNjCNJ962/2Mg4/zh2acndb77efJvKNrKvdLFSttLgfIvzcNB8Ks6LE8c2XPWZVOMMGmvQPC2OVWWc0wvLWrrwjXXZFyL7bu4O+9yaGsfYKmne3T+UJDN7S9KMpGv+4m7URv3SHqtxyFVLv3649hiStPbJTxsZR5L+/tDbjYwzMTX/Ue/tdeXbVLaR/dnfrpStNDjf4jwcNJ+K82LbTx666jOpxhk01qB5Whyryjhbty1cfquO+kJkfXP3e9W55HK7pIW+7cXeviuY2TNmNmdmc8u6VONwY2dovmRbGXM3HbLtUJ2GbgP2XXX9xt33uvu0u0+v1boahxs7Q/Ml28qYu+mQbYfqNPRFSXf2bd8h6eN65aAP+aZDtumQbYfqXEM/KmmLmd0t6b+Sdkh6upGqIJFvSmSbznVnuzK5sbH7YmG9Xu4eXeWG7u4rZva8pHckTUja5+7/rjoerkS+6ZBtOmTbrTpn6HL3w5ION1QLCsg3HbJNh2y7w5OiABBErTN0AKjLNq00+kxISK+X+xhn6AAQBA0dAIKgoQNAEDR0AAiCm6IAOnXf+ouNfbldVBMlP8cZOgAEQUMHgCBo6AAQBNfQg+ALjkoo+QVHaNeJYxsGLtiBfvOlPsUZOgAEQUMHgCBo6AAQBA0dAILgpiiATnFDv4SSN/Q5QweAIGjoABAEDR0AguAaOoBOsWJRCaxYBADjhYYOAEHQ0AEgCBo6AATBTVEAnWLFouFYsQgAxgwNHQCCoKEDQBBcQw+ChzNKKPlwBtrFikVlsGIRAIwVGjoABEFDB4AgaOgAEAQ3RQF0ihWLSmDFIgAYLzR0AAhiaEM3s31mdt7Mjvft22xm75rZyd7rprRlxrX7d+d02wOn9PNHz1zeR77NOPXyn/TPHa/o+LN/uLyPbJvBvB1NZc7Q90vaXtg3K+mIu2+RdKS3jQp2PfUjHX5jqribfBsw+fiDuvelp4q7ybYBzNvRNPSmqLu/Z2Y/K+yekfRo7/0BSX+R9EKDdY2NRx5er9MLy8Xd5NuAHz54ly6d+7y4m2wb0OS85SnnEhIvQXeru5+VpN7rLRXHwWDkmw7ZpkO2HUt+U9TMnjGzOTObW9al1IcbK/3Zrnzxv67LCYe5mw5zN42qDf2cmU1JUu/1/LU+6O573X3a3afXal3Fw42dUvn2Z7vmxxtaLTBjzN10KmXL3G1O1QeLDknaJWlP7/VgYxVBIt+UyDadStmyYtFwZVcsGtrQzexNrd7omDSzRUkvavUX9kcz2y3pjKTfVKxz7D393Cf669++1tKFb3TXL05J0qTItxEf7Dmor46d0cqXX+tfv31VItvGFOftmgmTyLZzZf7KZec1/uuxhmsZS2+8dtsV2xNT80vu/pnIt7Z7Zmeu2D76xB6ybUhx3m7dtqDTC8tk2zGeFAWAIGjoABAE37YYBDeWhit7YwntYgm6MliCDgDGCg0dAIKgoQNAEFxDB9ApViwqgRWLAGC80NABIAgaOgAEQUMHgCC4KQqgU6xYVELiFYsAACOGhg4AQdDQASAIrqED6BRfLDdc2S+W4wwdAIKgoQNAEDR0AAiChg4AQZi7t3cws08lfaTV1deXWjtwc9qo+6fufvP1/hDZllIpWyn7fMk2rZHJt9WGfvmgZnPuPt36gWvKoe4cahwkl7pzqbNfLjXnUmfRKNXNJRcACIKGDgBBdNXQ93Z03LpyqDuHGgfJpe5c6uyXS8251Fk0MnV3cg0dANA8LrkAQBCtN3Qz225m75vZvJnNtn38Msxsn5mdN7Pjffs2m9m7Znay97qpyxoHySFbKc98yTatHPLNIdtWG7qZTUh6VdITku6XtNPM7m+zhpL2S9pe2Dcr6Yi7b5F0pLc9MjLKVsosX7JNK6N892vEs237DH2rpHl3/9Dd/y/pLUkzLdcwlLu/J+lCYfeMpAO99wckPdlqUcNlka2UZb5km1YW+eaQbdsN/XZJC33bi719ObjV3c9KUu/1lo7rKco5W2m08yXbtHLOd6Sybbuh24B9/JlNM8g2HbJNi3wb0nZDX5R0Z9/2HZI+brmGqs6Z2ZQk9V7Pd1xPUc7ZSqOdL9mmlXO+I5Vt2w39qKQtZna3md0gaYekQy3XUNUhSbt673dJOthhLYPknK002vmSbVo55zta2bp7q/8k/UrSCUkfSPp928cvWeObks5KWtbq2cNuSTdp9S72yd7r5q7rzDHbXPMlW/LNIVueFAWAIHhSFACCoKEDQBA0dAAIgoYOAEHQ0AEgCBo6AARBQweAIGjoABDEt1uHTloE0FJaAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plotWorkgroupConfig(4,4)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAABrCAYAAABnlHmpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAB9JJREFUeJzt3c9rHPcdxvHn41WyqxgEkexEyo/WwTgEUUwowqWXEgjFbi/upSbOwSYYAoVeeqqhh177D5SCD8a+JKH0Eh8cRGpoc+hFKgkmLcRWEztS7dpR3ITg1K4kPj1oa3ZnR9Fqdma+8/36/QIzO+OR5uHx+sPszK5k7i4AQPx2hQ4AACgHAx0AEsFAB4BEMNABIBEMdABIBAMdABLBQAeARDDQASARIw10MztiZh+Z2ZKZnS4rFDbRb3Xotjp0G44V/aSombUkXZH0Q0krkhYkHXf3v2/1NY9a2zvaXeh4VXj+4NehIwz46+X7q+6+d6f9Nq3bJvpK/y7UrZTfr413+tbXx1sDX7fR7l/39uD/t057rW99cuzuwD5TrfW+9SuXHxvYJ5snL1M2T16mbJ68TNk815bXtHpnw1KYC030/+fudvuNjXCMQ5KW3P1jSTKztyQdlbTlP1xHu/U9e3mEQ5Zrfv6D0BEGtGaWrncf7qjfpnXbRH/0PxTqVsrvd9cLs33rX8xODHzdl/v7XwTf239/YJ/ZfTf61o9NLwzsc2JitW/98FMvDuyTzZOXKZsnL1M2T16mbJ5Dh5cfPFTkc6GJep6732iUSy5PS1ruWV/pbutjZq+b2aKZLa5p8MmMLW3bL90WxnO3OnQb0CgD3XK2DbyedPcz7j7n7nOPKOf1Hraybb90WxjP3erQbUCjDPQVSc/2rD8jafC1Goqi3+rQbXXoNqBRrqEvSDpgZs9J+qekVyS9WkoqSPRbJbqtzo67tfFO7vV/9Hh/uN0KD3R3Xzezn0ual9SSdNbd/1b0+6Ef/VaHbqtDt2GNcoYud78o6WJJWZBBv9Wh2+rQbTh8UhQAEjHSGToAjGp9vJX7Hn70GPIaOmfoAJAIBjoAJIKBDgCJYKADQCK4KQogqI12/g8Nw87RIgAkgoEOAIlgoANAIriGDiAob3vuL/7AznGGDgCJYKADQCIY6ACQCAY6ACSCm6IAguq01zS7j99S902uD7kfZ+gAkAgGOgAkgoEOAIngGjqAoCbH7urY9ELoGI32zpD7cYYOAIlgoANAIhjoAJAIBjoAJIKbogCCmmqt68TEaugYjfbakPtxhg4AiWCgA0AiGOgAkAiuoSfi+YNfa37+g9AxGq01EzoB8ly5/JgOP/Vi6BgNtzTUXpyhA0AiGOgAkAgGOgAkgoEOAIngpiiAoGy8o10vzIaO0WzvD7cbZ+gAkAgGOgAkYtuBbmZnzey2mX3Ys23SzN41s6vd5ePVxkzXqV/c0vR3PtHBlz59sI1+y0G31aHbZhrmDP2cpCOZbaclXXL3A5IudddRwMljE7r4xsAnXui3BHRbHbptpm1virr7e2a2L7P5qKSXuo/PS/qTpF+WmOuh8YPvj+va8lp2M/2WgG6rU2a36+MtfTE7UWa89FR8U/RJd78pSd3lEwW/D/LRb3Xotjp0G1jlN0XN7HUzWzSzxTXdr/pwD5Xebj/7fCN0nOTw3K1Ob7fr9+6GjpOMogP9lpnNSFJ3eXurHd39jLvPufvcI2oXPNxDZ6h+e7vdO9WqNWDEeO5Wp1C3Y53dtQVMXdEPFl2QdFLSb7rLt0tLBIl+q0S31SnU7UZb+nI/76Auw7YD3cze1OaNjj1mtiLp19r8B/u9mZ2S9Kmkn1YZMmWv/uxf+vNf/qPVOxv61nc/kaQ9ot9S0G11st2OtUyi2+CGeZfL8S3+6uWSszyU3vjddN96a2Zp1d0/F/2OjG6rk+320OFlXVteo9vAeJ0DAIlgoANAIvhpiwCC8rbr3n7eFloGztABIBEMdABIBAMdABLBNXQAQXXaa5rddyN0jEa7PuR+nKEDQCIY6ACQCAY6ACSCgQ4AieCmKICgJsfu6tj0QugYjfbOkPtxhg4AiWCgA0AiGOgAkAiuoQMIaqq1rhMTq6FjNNprQ+7HGToAJIKBDgCJYKADQCIY6ACQCHP3+g5m9pk2f3DYHkkx3gWpI/e33X3vTr+IbodSqFsp+n7ptlqN6bfWgf7goGaL7j5X+4FHFEPuGDLmiSV3LDl7xZI5lpxZTcrNJRcASAQDHQASEWqgnwl03FHFkDuGjHliyR1Lzl6xZI4lZ1Zjcge5hg4AKB+XXAAgEbUPdDM7YmYfmdmSmZ2u+/jDMLOzZnbbzD7s2TZpZu+a2dXu8vGQGfPE0K0UZ790W60Y+o2h21oHupm1JP1W0o8kzUo6bmazdWYY0jlJRzLbTku65O4HJF3qrjdGRN1KkfVLt9WKqN9zani3dZ+hH5K05O4fu/t/Jb0l6WjNGbbl7u9JupPZfFTS+e7j85J+Umuo7UXRrRRlv3RbrSj6jaHbugf605KWe9ZXutti8KS735Sk7vKJwHmyYu5Wana/dFutmPttVLd1D3TL2cbbbMpBt9Wh22rRb0nqHugrkp7tWX9G0o2aMxR1y8xmJKm7vB04T1bM3UrN7pduqxVzv43qtu6BviDpgJk9Z2aPSnpF0oWaMxR1QdLJ7uOTkt4OmCVPzN1Kze6XbqsVc7/N6tbda/0j6ceSrkj6h6Rf1X38ITO+KemmpDVtnj2ckjSlzbvYV7vLydA5Y+w21n7pln5j6JZPigJAIvikKAAkgoEOAIlgoANAIhjoAJAIBjoAJIKBDgCJYKADQCIY6ACQiP8BpLw4oSzcg78AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plotWorkgroupConfig(8,8)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAABrCAYAAABnlHmpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAACCdJREFUeJzt3V+IXGcZx/Hfk5nsn7bGbP6nf1NKiqxtqbqkCEULRRK9iRdaml4YSiAg9EYQDHpRBC+8FESEICG5aYvkphFTYxuxFRRJxKCt0GRtk+5202zXxKptk90kjxc7LnNmZp3ZM+ff+873A+HM++bsnie/Pfvk5Jx5s+buAgCEb1XZBQAAskFDB4BI0NABIBI0dACIBA0dACJBQweASNDQASASNHQAiERfDd3MdpnZm2Y2aWYHsioKi8g3P2SbH7Itj6VdKWpmNUlnJX1J0rSkU5L2uPvflvuYIRv2Ed2a6niD4t+6MufuG1eaL9l2lzZbqXO+trqe3KneMpZ0s568ZvK6te9TU8s+7cf31n1qHb5vO8zV6zcT46FV19v2Gakl50ZXzbftM2oLLePkn+v81ILmLt8w+kI+/nfudtuvw6nTsx2SJt39LUkysxck7Za07BduRLfqEXu8j0PG7xU/eqHxckX5km13abOVOudb37A5Mb65aazt4+Y3JBvV1fXt33JXx5LN8dpYe9OfX5ts1gtrb7TtU/9keyNev/Y/ifHda6607XP/bbOJ8QOj0237PDg8kxh/emg0Md6xc2rppegLmWs6d/+vfm653CFpqmk83ZhLMLP9ZnbazE4v6Fofhxs4XfMl29Q4d/NDtiXqp6G3X0ZIbf/mc/eD7j7h7hOrNdzH4QZO13zJNjXO3fyQbYn6aejTku5qGt8paWaZfbFy5Jsfss0P2Zaon3vopyRtN7N7Jb0r6UlJT2VSFSTyzRPZ5mfF2d7/0Ec6ceJMEbUFq7a1t/1SN3R3v25mz0g6Iakm6ZC7v5H28yGJfPNDtvkh23L1c4Uudz8u6XhGtaAF+eaHbPNDtuVhpSgARKKvK3RUh42OaNWnxssuo9r+XHYB6OTsX27RztsfLruMipvsaS+u0AEgEjR0AIgEDR0AIkFDB4BI8FAUQKlYWNRdrwuLuEIHgEjQ0AEgEjR0AIgE99AjcX20pn+Orym7jGpjYVElsbCoFywsAoCBQkMHgEjQ0AEgEjR0AIgED0UBlIqFRd2xsAgABgwNHQAiQUMHgEhwDz0SN4alD+7j72eEh4VFvWBhEQAMFBo6AESChg4AkaChA0AkeCgKoFQsLOqOhUUAMGBo6AAQCRo6AESCe+iR8GHX1fuulV0GsGIsLOoFC4sAYKDQ0AEgEjR0AIgEDR0AIsFDUQClYmFRdywsAoABQ0MHgEh0behmdsjMZs3s9aa5dWb2spmda2zH8i0zXm/4ab3qv9Af/NdLc+SbjbmfHdXUMz/QzHd/tDRHttnY961L2vLA23rosXeW5si2fL1coR+WtKtl7oCkk+6+XdLJxhgp3K579Bk92jpNvhm47dHPadO3n26dJtsM7H1ijY4/13Zjl2xL1vWhqLu/ZmbbWqZ3S3qs8fqIpN9K+k6GdQ2MMduoj/3D1ukV5zsyvKDxbTNZlxe2bcP66OK/9KehxWwuLM5y7mbgC58f1fmphdbpVNmyUrQX+a4U3ezuFyWpsd2U8vOgM/LND9nmh2xLlvvbFs1sv6T9kjSiW/I+3EBJZLv5EyVXEx/O3fyQbT7SXqFfMrOtktTYzi63o7sfdPcJd59YreGUhxs4PeXbnO3Q2tFCCwwY525+yLZkaa/Qj0naK+mHje2LmVUEiXzzRLb5SZUtC4u663VhUdeGbmbPa/FBxwYzm5b0rBa/YD83s32S3pH09bSFDrq/+h91Re9rQdf0O/+lJG0Q+WbizPd/pctn3tX8B1f1m68dksg2M0998z29+vuPNXf5hu7+7Nuq10wi29L18i6XPcv81uMZ1zKQHrRHEuNX/Oicu/9D5Nu3h59Nvtv2pS/+mGwz8txPtyTGO3ZO6fzUAtmWjJWiABAJGjoARIL/bTES6+of6oktp8ouo9JeKrsAdMTCol7wI+gAYKDQ0AEgEjR0AIgE99ABlIqFRd3xE4sAYMDQ0AEgEjR0AIgEDR0AIsFD0Uisr13XN9bMlV1GpbX9MDpUAguLesHCIgAYKDR0AIgEDR0AIsE9dAClYmFRdywsAoABQ0MHgEjQ0AEgEjR0AIiEuXtxBzN7X9IFLf709RBXwRRR9z3uvnGlH0S2PUmVrRR8vmSbr8rkW2hDXzqo2Wl3nyj8wH0Koe4QauwklLpDqbNZKDWHUmerKtXNLRcAiAQNHQAiUVZDP1jScfsVQt0h1NhJKHWHUmezUGoOpc5Wlam7lHvoAIDsccsFACJReEM3s11m9qaZTZrZgaKP3wszO2Rms2b2etPcOjN72czONbZjZdbYSQjZSmHmS7b5CiHfELIttKGbWU3STyR9WdK4pD1mNl5kDT06LGlXy9wBSSfdfbukk41xZQSUrRRYvmSbr4DyPayKZ1v0FfoOSZPu/pa7z0t6QdLugmvoyt1fk3S5ZXq3pCON10ckfbXQoroLIlspyHzJNl9B5BtCtkU39DskTTWNpxtzIdjs7hclqbHdVHI9rULOVqp2vmSbr5DzrVS2RTd06zDH22yyQbb5Idt8kW9Gim7o05LuahrfKWmm4BrSumRmWyWpsZ0tuZ5WIWcrVTtfss1XyPlWKtuiG/opSdvN7F4zG5L0pKRjBdeQ1jFJexuv90p6scRaOgk5W6na+ZJtvkLOt1rZunuhvyR9RdJZSX+X9L2ij99jjc9LuihpQYtXD/skrdfiU+xzje26susMMdtQ8yVb8g0hW1aKAkAkWCkKAJGgoQNAJGjoABAJGjoARIKGDgCRoKEDQCRo6AAQCRo6AETiv+qQRIYl3vsZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plotWorkgroupConfig(16,2)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAABrCAYAAABnlHmpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAB8RJREFUeJzt3c9rHOcdx/HPV7vWj6Qoln8rv0NwKGoS2iIcCqUEQrHbi3tpiHOoDwZDoZeeauih1/4DpeCDsS9JKLnEpQY3MTQptBS5UNKkEFt1nEiNY0e1W5I0tlb2twdtzGq98oxmZ+bZ59n3C8zsPH525+uPhq8ez+xK5u4CAMRvJHQBAIBy0NABIBE0dABIBA0dABJBQweARNDQASARNHQASAQNHQAS0VdDN7N9Zvaemc2b2ZGyisIq8q0O2VaHbMOxop8UNbOGpHOSvitpUdKcpAPu/o/1njNqYz6ue+/+uhPjmcdemWhkzrk5ljlFPpbv3z4+1sqcs6X5eeacrY2VzDl/ffvGkrtv32i+ebIddp/qWqFspd75PvH0/9bsn3v7njueF3JOr3lVzbm40NLS1ZtWVV8Ydl+eu1nzmn0cY4+keXe/IElm9oqk/ZLW/cKN6149Y8/d9UVHvjqTeeD/zExmzvnv49n/+bj++I3MOZI08+hHmXOe3zWXOedHk0uZcxrT8x+0H24o3zzZDrs3/NVC2Uq98z19+m9r9vfe//U7nhdyTq95Vc3Zs3fh9kNV0BeGXce5e1f9XHJ5QNJCx/5ie2wNMztsZmfN7GxL+RooJOXIl2wL49ytDtkG1E9Dtx5jd1zDcPej7j7r7rOblOM6CL6UmS/ZFsa5Wx2yDaifhr4o6aGO/QclZV+bQF7kWx2yrQ7ZBtTPNfQ5SbvN7DFJ/5L0gqQXS6kKEvlWiWyrs+FsbVNTzW0766gtXpfyTSvc0N19xcx+Ium0pIakY+7+btHXw1rkWx2yrQ7ZhtXPCl3ufkrSqZJqQRfyrQ7ZVodsw+GTogCQiL5W6ADQt2ZTt3ZMha5isOW8hs4KHQASQUMHgETQ0AEgETR0AEgEN0UBBHWrOaLlbfy0xTKwQgeARNDQASARNHQASATX0AEE5U3T9a20ojKwQgeARNDQASARNHQASAQNHQASwZ0IAEHdakjXp1hbloEUASARNHQASAQNHQASwTV0AEF5U7oxZaHLSAIrdABIBA0dABJBQweARNDQASAR3BQFEJQ3pOXNHrqMJLBCB4BE0NABIBE0dABIBNfQAQTlDVdr883QZSSBFToAJIKGDgCJoKEDQCJo6ACQCG6KAgir4Wretxy6iiSwQgeARNDQASARmQ3dzI6Z2RUze6djbIuZvW5m59vbqWrLTNehn17Wriff19PPfnh7jHzL8a6f1Zv+W/3Zf397jGzLwXk7mPKs0I9L2tc1dkTSGXffLelMex8FHHx+Uqdemu4eJt8S3K9H9A19u3uYbEvAeTuYMm+KuvtbZvZo1/B+Sc+2H5+Q9AdJPyuxrqHxnW9N6OJCq3uYfEswZdv1hX/ePUy2JSjzvG02b2nr5s/KLC85F3LOK3oNfae7X5Kk9nZHwddBb+RbHbKtDtkGVvnbFs3ssKTDkjSue6o+3FAh22qRb3U6sx3dMRm4mnQUXaFfNrNpSWpvr6w30d2Puvusu89u0ljBww2dXPmSbSGcu9UplG3zPr5ZlqXoCv2kpIOSftnevlZaRZDIt0pkW51C2Y6OrOjhyWtV1hW9uZzzMhu6mb2s1Rsd28xsUdIvtPoF+42ZHZL0oaQfFqxz6L3444/15p++0NLVm3r4m+9L0jaRbyn+7n/RNX2ilm7oj/47iWxL033eNhsmkW1wed7lcmCdv3qu5FqG0ku/3rVmvzE9v+Tu/xb59u0pe2bN/hv+KtmWpPu83bN3QRcXWmQbGJ8UBYBE0NABIBH8tEUAQY03VvTEV9Z9Qww2gBU6ACSChg4AiaChA0AiuIYOIKiJkWU9ObEYuowksEIHgETQ0AEgETR0AEgEDR0AEsFNUQBBTVhLT419FLqMJLBCB4BE0NABIBE0dABIBNfQAQQ1YSP62uhE6DKSwAodABJBQweARNDQASARNHQASIS5e30HM/tE0gda/e3rS7UduDx11P2Iu2/f6JPINpdC2UrR50u21RqYfGtt6LcPanbW3WdrP3CfYqg7hhp7iaXuWOrsFEvNsdTZbZDq5pILACSChg4AiQjV0I8GOm6/Yqg7hhp7iaXuWOrsFEvNsdTZbWDqDnINHQBQPi65AEAiam/oZrbPzN4zs3kzO1L38fMws2NmdsXM3ukY22Jmr5vZ+fZ2KmSNvcSQrRRnvmRbrRjyjSHbWhu6mTUk/UrS9yTNSDpgZjN11pDTcUn7usaOSDrj7rslnWnvD4yIspUiy5dsqxVRvsc14NnWvULfI2ne3S+4+7KkVyTtr7mGTO7+lqSrXcP7JZ1oPz4h6Qe1FpUtimylKPMl22pFkW8M2dbd0B+QtNCxv9gei8FOd78kSe3tjsD1dIs5W2mw8yXbasWc70BlW3dDtx5jvM2mHGRbHbKtFvmWpO6GvijpoY79ByXF8tthL5vZtCS1t1cC19Mt5mylwc6XbKsVc74DlW3dDX1O0m4ze8zMRiW9IOlkzTUUdVLSwfbjg5JeC1hLLzFnKw12vmRbrZjzHaxs3b3WP5K+L+mcpH9K+nndx89Z48uSLklqaXX1cEjSVq3exT7f3m4JXWeM2caaL9mSbwzZ8klRAEgEnxQFgETQ0AEgETR0AEgEDR0AEkFDB4BE0NABIBE0dABIBA0dABLxf0GZN9fdsbfGAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plotWorkgroupConfig(2,16)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor&
|