1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
from sympy import *
# copy of `sympy.integrals.quadrature.gauss_hermite` sans evaluation
def gauss_hermite(n):
x = Dummy("x")
p = hermite_poly(n, x, polys=True)
p1 = hermite_poly(n-1, x, polys=True)
xi = []
w = []
for r in p.real_roots():
xi.append(r)
w.append(((2**(n-1) * factorial(n) * sqrt(pi))/(n**2 * p1.subs(x, r)**2)))
return xi, w
# determine weights of a d-dimensional LBM model on velocity set c
# (only works for velocity sets that result into NSE-recovering LB models when
# plugged into Gauss-Hermite quadrature without any additional arguments
# i.e. D2Q9 and D3Q27 but not D3Q19)
def weights(d, c):
_, omegas = gauss_hermite(3)
return list(map(lambda c_i: Mul(*[ omegas[1+c_i[iDim]] for iDim in range(0,d) ]) / pi**(d/2), c))
# determine lattice speed of sound using directions and their weights
def c_s(d, c, w):
speeds = set([ sqrt(sum([ w[i] * c_i[j]**2 for i, c_i in enumerate(c) ])) for j in range(0,d) ])
assert len(speeds) == 1 # verify isotropy
return speeds.pop()
|