1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#include <LLBM/base.h>
#include <LLBM/bulk.h>
#include <LLBM/boundary.h>
#include "util/render_window.h"
#include "util/texture.h"
#include "util/colormap.h"
#include <LLBM/kernel/collect_moments.h>
#include <LLBM/kernel/collect_velocity_norm.h>
using T = float;
using DESCRIPTOR = descriptor::D2Q9;
int main() {
if (cuda::device::count() == 0) {
std::cerr << "No CUDA devices on this system" << std::endl;
return -1;
}
auto current = cuda::device::current::get();
const descriptor::Cuboid<DESCRIPTOR> cuboid(1200, 500);
Lattice<DESCRIPTOR,T> lattice(cuboid);
const float tau = 0.52;
const float u_inflow = 0.02;
const float u_rotate = 0.08;
CellMaterials<DESCRIPTOR> materials(cuboid, [&cuboid](uint2 p) -> int {
if (p.x == 0) {
return 3; // inflow
} else if (p.x == cuboid.nX-1) {
return 4; // outflow
} else if (p.y == 0 || p.y == cuboid.nY-1) {
return 2; // wall
} else {
return 1; // bulk
}
});
materials.set(gid(cuboid, 0,0), 2);
materials.set(gid(cuboid, 0,cuboid.nY-1), 2);
materials.set(gid(cuboid, cuboid.nX-1,0), 5);
materials.set(gid(cuboid, cuboid.nX-1,cuboid.nY-1), 5);
auto cylinder = [cuboid] __host__ __device__ (float2 p) -> float {
float2 q = p - make_float2(cuboid.nX/6, 3*cuboid.nY/4);
float2 r = p - make_float2(cuboid.nX/6, 1*cuboid.nY/4);
return sdf::add(sdf::sphere(q, cuboid.nY/18),
sdf::sphere(r, cuboid.nY/18));
};
materials.sdf(cylinder, 0);
SignedDistanceBoundary bouzidi(lattice, materials, cylinder, 1, 0);
bouzidi.setVelocity([cuboid,u_rotate](float2 p) -> float2 {
float2 q = p - make_float2(cuboid.nX/6, 3*cuboid.nY/4);
if (length(q) < 1.1*cuboid.nY/18) {
return u_rotate * normalize(make_float2(-q.y, q.x));
} else {
return make_float2(0);
}
});
auto bulk_mask = materials.mask_of_material(1);
auto wall_mask = materials.mask_of_material(2);
auto inflow_mask = materials.mask_of_material(3);
auto outflow_mask = materials.mask_of_material(4);
auto edge_mask = materials.mask_of_material(5);
cuda::synchronize(current);
RenderWindow window("Magnus");
cudaSurfaceObject_t colormap;
ColorPalette palette(colormap);
DeviceBuffer<T> moments_rho(cuboid.volume);
DeviceBuffer<T> moments_u(2*cuboid.volume);
T* u = moments_u.device();
std::size_t iStep = 0;
while (window.isOpen()) {
lattice.apply(Operator(BgkCollideO(), bulk_mask, tau),
Operator(BounceBackFreeSlipO(), wall_mask, WallNormal<0,1>()),
Operator(EquilibriumVelocityWallO(), inflow_mask, std::min(iStep*1e-5, 1.)*u_inflow, WallNormal<1,0>()),
Operator(EquilibriumDensityWallO(), outflow_mask, 1., WallNormal<-1,0>()),
Operator(BounceBackO(), edge_mask));
lattice.apply<BouzidiO>(bouzidi.getCount(), bouzidi.getConfig());
lattice.stream();
if (iStep % 200 == 0) {
cuda::synchronize(current);
lattice.inspect<CollectMomentsF>(bulk_mask, moments_rho.device(), moments_u.device());
renderSliceViewToTexture<<<
dim3(cuboid.nX / 32 + 1, cuboid.nY / 32 + 1),
dim3(32,32)
>>>(cuboid.nX, cuboid.nY,
[cuboid] __device__ (int iX, int iY) -> std::size_t {
return descriptor::gid(cuboid,iX,cuboid.nY-1-iY);
},
[u,u_rotate] __device__ (std::size_t gid) -> float {
return length(make_float2(u[2*gid+0], u[2*gid+1])) / u_rotate;
},
[colormap] __device__ (float x) -> float3 {
return colorFromTexture(colormap, clamp(x, 0.f, 1.f));
},
window.getRenderSurface());
window.draw([&]() {
ImGui::Begin("Render");
palette.interact();
ImGui::End();
}, [](sf::Event&) { });
}
++iStep;
}
}
|