1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
#include <LLBM/base.h>
#include <LLBM/bulk.h>
#include <LLBM/boundary.h>
#include "util/render_window.h"
#include "util/texture.h"
#include "util/colormap.h"
#include "util/volumetric_example.h"
#include "sampler/velocity_norm.h"
#include "sampler/curl_norm.h"
#include "sampler/q_criterion.h"
using T = float;
using DESCRIPTOR = descriptor::D3Q19;
int main() {
cudaSetDevice(0);
const descriptor::Cuboid<DESCRIPTOR> cuboid(448, 64, 64);
Lattice<DESCRIPTOR,T> lattice(cuboid);
CellMaterials<DESCRIPTOR> materials(cuboid, [&cuboid](uint3 p) -> int {
if (p.y == 0 || p.y == cuboid.nY-1 || p.z == 0 || p.z == cuboid.nZ-1) {
return 2; // boundary cell
} else if (p.x == 0) {
return 3; // inflow cell
} else if (p.x == cuboid.nX-1) {
return 4; // outflow cell
} else {
return 1; // bulk
}
});
auto obstacle = [cuboid] __host__ __device__ (float3 p) -> float {
float3 q = p - make_float3(cuboid.nX/24.2f, cuboid.nY/2, cuboid.nZ/2);
return sdf::ssub(sdf::sphere(make_float2(q.y,q.z), cuboid.nY/T{9}),
sdf::box(q, make_float3(cuboid.nX/128,cuboid.nY/2,cuboid.nZ/2)),
5);
};
materials.sdf(obstacle, 0);
SignedDistanceBoundary bouzidi(lattice, materials, obstacle, 1, 0);
auto bulk_mask = materials.mask_of_material(1);
auto boundary_mask = materials.mask_of_material(2);
auto inflow_mask = materials.mask_of_material(3);
auto outflow_mask = materials.mask_of_material(4);
lattice.apply(Operator(InitializeO(), bulk_mask),
Operator(InitializeO(), boundary_mask),
Operator(InitializeO(), inflow_mask),
Operator(InitializeO(), outflow_mask));
cudaDeviceSynchronize();
VolumetricExample renderer(cuboid);
renderer.add<CurlNormS>(lattice, bulk_mask, obstacle);
renderer.add<QCriterionS>(lattice, bulk_mask, obstacle);
renderer.add<VelocityNormS>(lattice, bulk_mask, obstacle);
renderer.run([&](std::size_t iStep) {
const float tau = 0.501;
const float smagorinsky = 0.1;
const float inflow = 0.0075;
lattice.apply(Operator(SmagorinskyBgkCollideO(), bulk_mask, tau, smagorinsky),
Operator(BounceBackO(), boundary_mask),
Operator(EquilibriumVelocityWallO(), inflow_mask, std::min(iStep*1e-4, 1.0)*inflow, WallNormal<1,0,0>()),
Operator(EquilibriumDensityWallO(), outflow_mask, 1, WallNormal<-1,0,0>()));
lattice.apply<BouzidiO>(bouzidi.getCount(), bouzidi.getConfig());
lattice.stream();
});
}
|