1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#include <iostream>
#include <vector>
#include <algorithm>
#include "lbm.h"
#include "boundary_conditions.h"
#include "box_obstacle.h"
constexpr std::size_t dimX = 120;
constexpr std::size_t dimY = dimX;
constexpr double uLid = 0.3;
constexpr double reynolds = 1000;
constexpr double tau = 3 * uLid * (dimX-1) / reynolds + 0.5;
constexpr double omega = 1. / tau;
DataCellBuffer pop(dimX, dimY);
FluidBuffer fluid(dimX, dimY);
std::vector<BoxObstacle> obstacles{
{20, 20, 40, 40},
{50, 20, 70, 40},
{80, 20, 100, 40},
{20, 50, 40, 70},
{50, 50, 70, 70},
{80, 50, 100, 70},
{20, 80, 40, 100},
{50, 80, 70, 100},
{80, 80, 100, 100},
};
void init() {
for ( std::size_t x = 0; x < dimX; ++x ) {
for ( std::size_t y = 0; y < dimY; ++y ) {
fluid.density(x,y) = 1.0;
fluid.velocity(x,y) = { 0.0, 0.0 };
static_cast<Cell&>(pop.curr(x,y)).equilibrize(
fluid.density(x,y), fluid.velocity(x,y));
static_cast<Cell&>(pop.prev(x,y)).equilibrize(
fluid.density(x,y), fluid.velocity(x,y));
}
}
}
void computeLbmStep() {
pop.swap();
for ( std::size_t x = 0; x < dimX; ++x ) {
for ( std::size_t y = 0; y < dimY; ++y ) {
if ( std::all_of(obstacles.cbegin(), obstacles.cend(), [x, y](const auto& o) {
return !o.isInside(x, y);
}) ) {
streamFluidCell(pop, x, y);
}
}
}
// straight wall cell bounce back
for ( std::size_t x = 0; x < dimX; ++x ) {
computeZouHeVelocityWallCell(pop, {x, dimY-1}, { 0,-1}, uLid);
}
for ( std::size_t x = 1; x < dimX-1; ++x ) {
computeWallCell(pop, {x, 0}, { 0, 1});
}
for ( std::size_t y = 1; y < dimY-1; ++y ) {
computeWallCell(pop, {0, y}, { 1, 0});
computeWallCell(pop, {dimX-1, y}, {-1, 0});
}
// edge wall cell bounce back
computeWallCell(pop, {0, 0 }, { 1, 1});
computeWallCell(pop, {dimX-1, 0 }, {-1, 1});
// obstacles
for ( const auto& box : obstacles ) {
box.applyBoundary(pop);
}
for ( std::size_t x = 0; x < dimX; ++x ) {
for ( std::size_t y = 0; y < dimY; ++y ) {
Cell& cell = static_cast<Cell&>(pop.curr(x,y));
fluid.density(x,y) = cell.sum();
fluid.velocity(x,y) = cell.velocity(fluid.density(x,y));
if ( std::all_of(obstacles.cbegin(), obstacles.cend(), [x, y](const auto& o) {
return !o.isInside(x, y);
}) ) {
collideFluidCell(omega, pop, fluid, x, y);
}
}
}
}
int main() {
init();
std::cout << "Re: " << reynolds << std::endl;
std::cout << "uLid: " << uLid << std::endl;
std::cout << "tau: " << tau << std::endl;
for ( std::size_t t = 0; t <= 6000; ++t ) {
computeLbmStep();
if ( t % 100 == 0 ) {
std::cout << ".";
std::cout.flush();
fluid.writeAsVTK("result/data_t" + std::to_string(t) + ".vtk");
}
}
std::cout << std::endl;
}
|